Part 3. Node Representation
This page contains the useful resources for part 3 of the tutorial: Node Representation.
Duration: 45 minutes
Panelist: Daniele Malitesta
- Design choices to train node embeddings from scratch: 20 minutes
- [Hands-on #2] Leveraging item’s side-information (e.g., multimodal features) to represent node embeddings: 25 minutes
Papers
- Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Daniele Malitesta, Vincenzo Paparella, Claudio Pomo:
Auditing Consumer- and Producer-Fairness in Graph Collaborative Filtering. ECIR (1) 2023: 33-48.
[paper][code] - Daniele Malitesta, Giandomenico Cornacchia, Claudio Pomo, Felice Antonio Merra, Tommaso Di Noia, Eugenio Di Sciascio:
Formalizing Multimedia Recommendation through Multimodal Deep Learning. CoRR abs/2309.05273 (2023).
[paper][code] - Daniele Malitesta, Giandomenico Cornacchia, Claudio Pomo, Tommaso Di Noia: On Popularity Bias of Multimodal-aware Recommender Systems: A Modalities-driven Analysis. MMIR@MM 2023: 59-68.
[paper][code]