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Abstract. To date, graph collaborative filtering (CF) strategies have
been shown to outperform pure CF models in generating accurate rec-
ommendations. Nevertheless, recent works have raised concerns about
fairness and potential biases in the recommendation landscape since un-
fair recommendations may harm the interests of Consumers and Produc-
ers (CP). Acknowledging that the literature lacks a careful evaluation of
graph CF on CP-aware fairness measures, we initially evaluated the ef-
fects on CP-aware fairness measures of eight state-of-the-art graph mod-
els with four pure CF recommenders. Unexpectedly, the observed trends
show that graph CF solutions do not ensure a large item exposure and
user fairness. To disentangle this performance puzzle, we formalize a
taxonomy for graph CF based on the mathematical foundations of the
different approaches. The proposed taxonomy shows differences in node
representation and neighbourhood exploration as dimensions character-
izing graph CF. Under this lens, the experimental outcomes become clear
and open the doors to a multi-objective CP-fairness analysis1.

Keywords: Graph Collaborative Filtering · Fairness · Multi-Objective Analysis

1 Introduction and Motivations

Recommender systems (RSs) are ubiquitous and utilized in a wide range of
domains from e-commerce and retail to media streaming and online advertis-
ing. Personalization, or the system’s ability to suggest relevant and engaging
products to users, has long served as a key indicator for gauging the success of
RSs. In recent decades, collaborative filtering (CF) [10], the predominant mod-
eling paradigm in RSs, has shifted from neighborhood techniques [10, 30, 31] to
frameworks based on the learning of users’ and items’ latent factors [16, 29, 49].
More recently, deep learning (DL) models have been proposed to overcome the
linearity of traditional latent factors approaches.

Among these DL algorithms, graph-based methods view the data in RSs
from the perspective of graphs. By modeling users and items as nodes with la-
tent representations and their interactions as edges, the data can be naturally
⋆ Authors are listed in alphabetical order. Corresponding authors: Daniele Malitesta

(daniele.malitesta@poliba.it) and Claudio Pomo (claudio.pomo@poliba.it).
1 Codes are available at: https://github.com/sisinflab/ECIR2023-Graph-CF.
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represented as a user-item bipartite graph. By iteratively aggregating contribu-
tions from near- and long-distance neighborhoods, the so-called message-passing
schema updates nodes’ initial representations and effectively distills the collabo-
rative signal [43]. Early works [5, 50] adopted the vanilla graph convolutional net-
work (GCN) [15] architecture and paved the way to advanced algorithms light-
ening the message-passing schema [8, 14] and exploring different graph sampling
strategies [47]. Recent approaches propose simplified formulations [21, 26] that
optionally transfer the graph CF paradigm to different spaces [33, 34]. As some
graph edges may provide noisy contributions to the message-passing schema [39],
a research line focuses on meaningful user-item interactions [36, 42, 45]. In this
context, explainability is the natural next step [18] towards the disentanglement
of user-item connections into a set of user intents [44, 46].

On the other side, the adoption of DL (and, often, black-box) approaches to
the recommendation task has raised issues regarding the fairness of RSs. The
concept of fairness in recommendation is multifaceted. Specifically, the two core
aspects to categorize recommendation fairness may be summarized as (1) the
primary parties engaged (consumers vs. producers) and (2) the type of benefit
provided (exposure vs. relevance). Item suppliers are more concerned about ex-
posure fairness than customers because they want to make their products better
known and visible (Producer fairness). However, from the customer’s perspec-
tive, relevance fairness is of utmost importance, and hence system designers must
ensure that exposure of items is equally effective across user groups (Consumer
fairness). A recent study highlights that nine out of ten publications on recom-
mendation fairness concentrated on either C-fairness or P-fairness [22], disre-
garding the joint evaluation between C-fairness, P-fairness, and the accuracy.

The various graph CF strategies described above have historically centered
on the enhancement of system accuracy, but, actually, never focused on the rec-
ommendation fairness dimensions. Despite some recent graph-based approaches
have specifically been designed to address C-fairness [11, 17, 27, 40, 41, 48] and
P-fairness [6, 19, 20, 35, 51, 52], there is a notable knowledge gap in the literature
about the effects of the state-of-the-art graph strategies on the three objectives
of C-fairness, P-fairness, and system accuracy. This work intends to complement
the previous research and provide answers to pending research problems such
as how different graph models perform for the three evaluation objectives. By
measuring these dimensions in terms of overall accuracy, user fairness, and
item exposure, we observe these aspects in detail2.
Motivating example. A preliminary comparison of the leading graph and clas-
sical CF models is carried out to provide context for our study. The graph-based
models include LightGCN [14], DGCF [44], LR-GCCF [8], and GFCF [33], which
are tested against two classical CF baselines, namely BPRMF [28] and RP3β [25],
on the Baby, Boys & Girls, and Men datasets from the Amazon catalog [23]. We
train each baseline using a total of 48 unique hyper-parameter settings and se-
lect the optimal configuration for each baseline as the one achieving the highest

2 In the rest of the paper, when no confusion arises, we will refer to C-fairness with user
fairness, to P-fairness with item exposure, and to their combination as CP-fairness.
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Fig. 1: Kiviat diagrams indicating the performance of selected pure and graph CF
recommenders on overall accuracy (i.e., O-Acc, calculated with the nDCG@20 ),
item exposure (i.e., I-Exp, calculated with the APLT@20 [1]), and user fairness
(U-Fair, calculated with the UMADrat@20 [9]). Higher means better.

accuracy on the validation set (as in the original papers). Overall accuracy,
user fairness, and item exposure (as introduced above) are evaluated. Figure 1
displays the performance of the selected baselines on the three considered rec-
ommendation objectives. For better visualization, all values are scaled between
0 and 1 using min-max normalization, and, when needed, they are replaced by
their 1’s complement to adhere to the “higher numbers are better” semantics. As
a result, in each of the three dimensions, the values lay in [0, 1] with higher values
indicating the better. Please, note that such an experimental evaluation is not
the main focus of this work but it is the motivating example for the more exten-
sive analysis we present later. The interested reader may refer to Appendix A
for a presentation of the full experimental settings to reproduce these results
and the ones reported in the following sections of the paper.

First, according to Figure 1, graph CF models are significantly more accurate
than the classical CF ones, even if the latter perform far better in terms of item
exposure. Moreover, the displayed trends suggest there is no clear winner on the
user fairness dimension: classical CF models show promising performance, while
some graph CF models do not achieve remarkable results. As a final observation,
an underlying trade-off between the three evaluation goals seems to exist, and it
might be worth investigating it in-depth. Such outcomes open to a more complete
study on how different strategy patterns recognized in graph CF may affect
the three recommendation objectives, which is the scope of this work.
Research questions and contributions. In the remainder of this paper, we
therefore attempt to answer the following two research questions (RQs):

RQ1. Given the different graph CF strategies, the raising question is “Can
we explain the variations observed when testing several graph models on overall
accuracy, item exposure, and user fairness separately?” According to a recent
benchmark that identifies some state-of-the-art graph techniques [54], the sug-
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Table 1: Categorization of the chosen graph baselines according to the proposed
taxonomy. For each model, we refer to the technical description reported in the
original paper and try to match it with our taxonomy.

Models

Nodes
Representation

Neighborhood
Exploration

Latent
representation Weighting Explored

nodes
Message
passing

low high weighted unweighted same different implicit explicit

GCN-CF* [15] ✓ ✓ ✓ ✓
GAT-CF* [39] ✓ ✓ ✓ ✓
NGCF [43] ✓ ✓ ✓ ✓
LightGCN [14] ✓ ✓ ✓ ✓
DGCF [44] ✓ ✓ ✓ ✓
LR-GCCF [8] ✓ ✓ ✓ ✓ ✓
UltraGCN [21] ✓ ✓ ✓ ✓
GFCF [33] ✓ ✓

*The postfix -CF indicates that we re-adapted the original implementations (tailored
for the task of node classification) to the task of personalized recommendation.

gested graph CF taxonomy (Table 1) extends the set of graph-based models
introduced in the motivating example by examining eight state-of-the-art graph
CF baselines through their strategies for nodes representation and neighborhood
exploration. We present a more nuanced view of prior findings by analyzing the
impact of each taxonomy dimension on overall accuracy and CP-fairness.
RQ2. The demonstrated performance prompts the questions: “How and why
nodes representation and neighborhood exploration algorithms can strike a trade-
off between overall accuracy, item exposure, and user fairness?” We employ the
Pareto optimality to determine the influence of such dimensions in two-objective
scenarios, where the objectives include overall accuracy, item exposure, and user
fairness. The Pareto frontier is computed for three 2-dimensional spaces: accu-
racy/item exposure, accuracy/user fairness, and item exposure/user fairness.

2 Nodes Representation and Neighborhood Exploration
in Graph Collaborative Filtering: A Formal Taxonomy

2.1 Preliminaries

Let U be the set of N users, and I the set of M items in the system, respectively.
We represent the observed interactions between users and items in a binary
format (i.e., implicit feedback). Specifically, let R ∈ RN×M be the user-item
feedback matrix, where ru,i = 1 if user u ∈ U and item i ∈ I have a recorded
interaction, ru,i = 0 otherwise. Following the above preliminaries, we introduce
G = (U , I,R) as the bipartite and undirected graph connecting users and items
(the graph nodes) when there exists a recorded bi-directional interaction among
them (the graph edges). Nodes features for user u ∈ U and i ∈ I are suitably
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encoded as the embeddings eu ∈ Rd and ei ∈ Rd, with d << N,M . Given the
dual nature of user and item derivations, we only report user-side formulas.

2.2 Updating node representation through message-passing

The representation of users’ and items’ nodes are updated by leveraging the
graph topology from G. In this respect, the message-passing schema has recently
gained attention in the literature. The algorithm works by aggregating the infor-
mation (i.e., the messages) from the neighbor nodes into the ego node, and the
process is recursively performed for multiple hops thus exploring wider neigh-
borhood portions. In general, the message-passing for l hops is:

e(l)
u = ω

({
e
(l−1)

i′ , ∀i′ ∈ N (u)
})

, (1)

where ω(·) and N (·) are the aggregation function and neighborhood node set,
respectively, while l is in 1 ≤ l ≤ L, where L is a hyper-parameter. Note that the
following statements hold: e(0)u = eu and e

(0)
i = ei. A reworking of Equation (1)

for l ∈ {2, 3} allows same- and different-type node representation emerge [3]:

Same-type
node
representation

{
e(2)
u︸︷︷︸

(user)

= ω
({

ω
({

e
(0)

u′′︸︷︷︸
(user)

, ∀u′′ ∈ N (i′) \ {u}
})

, ∀i′ ∈ N (u)
})

Different-type
node
representation


e(3)
u︸︷︷︸

(user)

= ω
({

ω
({

ω
({

e
(0)

i′′′︸︷︷︸
(item)

, ∀i′′′ ∈ N (u′′) \ {i′′}
})

,

∀u′′ ∈ N (i′) \ {u′′}
})

,∀i′ ∈ N (u)
})

.

(2)

To better clarify the extent of Equation (2), after an even and an odd number
of explored hops, ego node updates leverage by design same- and different-type
node connections, i.e., user-user/item-item and user-item/item-user as evident
from Equation (2). While the existing literature does not always consider the two
scenarios as distinct, we underline the importance of investigating the influence
of different node-node connections explored during the message-passing. In light
of the above, we will count the number of explored hops as follows: e(2l)∗ ,∀l ∈
{1, 2, . . . , L

2 } as obtained through l same-type node connections (denoted as
same-l), and e

(2l−1)
∗ ,∀l ∈ {1, 2, . . . , L

2 } as obtained through l different-type
node connections (denoted as different-l). In the following, we introduce the
graph convolutional network (GCN) and its recent CF applications.

The baseline: graph convolutional network (GCN). The stan-
dard graph convolutional network from Kipf and Welling [15] performs fea-
ture transformation, message aggregation, application of a one-layer neural net-
work, element-wise addition, and ReLU activation, respectively. Let us consider
W(l) ∈ Rdl−1×dl and b(l) ∈ Rdl as the weight matrix and the bias for the l-th
explored hop. The message-passing for user u is:

e(l)
u = ReLU

 ∑
i′∈N (u)

(
W(l)e

(l−1)

i′ + b(l)
) . (3)
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GCN for collaborative filtering. Inspired by the GCN message-
passing approach, the authors from Wang et al. [43] propose neural graph col-
laborative filtering (NGCF). At each hop exploration, the model aggregates the
neighborhood information and the inter-dependencies among the ego and the
neighborhood nodes. Formally, the aggregation could be formulated as follows:

e(l)
u = LeakyReLU

 ∑
i′∈N (u)

(
W

(l)

neighe
(l−1)

i′ +W
(l)

inter

(
e
(l−1)

i′ ⊙ e(l−1)
u

)
+ b(l)

) , (4)

where LeakyReLU is the activation function, W(l)
neigh ∈ Rdl−1×dl and W

(l)
inter ∈

Rdl−1×dl are the neighborhood and inter-dependencies weight matrices, respec-
tively, while ⊙ is the Hadamard product.

He et al. [14] propose a light convolutional network, namely LightGCN, with
the rationale to simplify the message-passing schema from GCN and NGCF by
dropping feature transformations (i.e., the weight matrices and biases) and the
non-linearity applied after the message aggregation. Specifically, they implement:

e(l)
u =

∑
i′∈N (u)

e
(l−1)

i′ . (5)

The variation shows superior accuracy to the state-of-the-art. A slightly different
solution [8] can outperform LightGCN regarding the accuracy level.

2.3 Weighting the importance of graph edges

The message-passing schema is inherently designed to aggregate into the ego
node all messages coming from its neighborhood. Nevertheless, the binary nature
of the user-item feedback (i.e., 0/1) would suggest that not all recorded user-item
interactions necessarily hide the same importance to the nodes they involve.

In general, let a(l)y−→x be the importance of the neighbor node y on its ego node
x after l explored hops. We re-write the formulation of the message-passing after
l explored hops (presented in Equation (1)) as:

e(l)
u = ω

({
a
(l)

i′−→ue
(l−1)

i′ , ∀i′ ∈ N (u)
})

. (6)

The baseline: graph attention network (GAT). Attention mech-
anisms have reached considerable success in the GCN-related literature to weight
the contribution of neighbor messages before aggregation. The original study [39]
proposes the following message-passing formulation:

e(l)
u =

∑
i′∈N (u)

(
a
(l)

i′−→uW
(l)
neighe

(l−1)

i′ + b(l)
)

=
∑

i′∈N (u)

(
α
(
e
(l−1)

i′ , e(l−1)
u

)
W

(l)
neighe

(l−1)

i′ + b(l)
)
,

(7)

where α(·) is the importance function depending on the lastly-calculated embed-
dings of the neighbor and the ego nodes, e.g., a(l)i′−→u = α

(
e
(l−1)
i′ , e

(l−1)
u

)
.
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GAT for collaborative filtering. The authors from Wang et al. [44]
design a message-passing schema that calculates the importance of neighbor-
hood nodes for ego nodes by disentangling the intents underlying each user-item
interaction. Similarly to He et al. [14] and Chen et al. [8], they therefore propose
the following embedding update formulation:

e(l)
u =

∑
i′∈N (u)

a
(l)

i′−→ue
(l−1)

i′

=
∑

i′∈N (u)

α
(
e
(l−1)

i′ , e(l−1)
u ,K, T

)
e
(l−1)

i′ ,
(8)

where α (·,K, T ) is the importance function of the lastly-calculated embeddings
from the neighbor and the ego nodes, e.g., a(l)i′−→u = α

(
e
(l−1)
i′ , e

(l−1)
u ,K, T

)
, K

is the total number of intents, and T is the total number of routing iterations to
repeat the disentangling procedure.

2.4 Going beyond message-passing

The recent graph learning literature [7, 53] has outlined the phenomenon of over-
smoothing, that leads node representations to become more similar as more hops
are explored. The issue is generally tackled by limiting the neighborhood explo-
ration to (maximum) three hops, and to two hops when attention mechanisms are
introduced. However, the idea of improving accuracy by restricting the number
of explored neighborhoods is counter-intuitive and “conflicts” with the rationale
behind collaborative filtering [4]. This awareness led works such as Mao et al. [21]
and Shen et al. [33] to surpass and simplify the traditional concept of message-
passing. UltraGCN [21] adopts negative sampling to contrast over-smoothing
and additional objective terms to (i) approximate the infinite neighborhood ex-
ploration and (ii) mine relevant “unexpected” node-node interactions such as
the item-item ones. Conversely, GFCF [33] translates the graph-based recom-
mendation task into the graph signal processing domain to obtain a closed-form
formulation for approximating the infinite neighborhood exploration. Given that
such recent strategies do not explicitly perform the message-passing schema as
presented above, in the remaining sections of this paper, we will adopt the terms
explicit and implicit message-passing as shorthands to denote the two model
families, respectively.

2.5 A taxonomy of graph CF approaches

We propose (see Table 1) a taxonomy to classify the state-of-the-art graph mod-
els. The taxonomy considers the recurrent strategy patterns as emerged by
conducting an in-depth review and analyzing the different graph CF approaches.

• Node representation indicates the representation strategy to model users’
and items’ nodes. It involves the dimensionality of node embeddings, and the
possibility of weighting the neighbor node contributions.
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• Neighborhood exploration refers to the procedure for exploring the multi-
hop neighborhoods of each node to update the node latent representation.
It involves the type of node-node connections which are explored, and the
message-passing schema (i.e., explicit or implicit as previously defined).

In the next two sections, we will assess the performance of the graph CF models
from the taxonomy in Table 1. Thus, we consider GCN-CF [15], GAT-CF [39],
NGCF [43], LightGCN [14], DGCF [44], LR-GCCF [8], UltraGCN [21], and
GFCF [33] for a total of eight graph CF solutions.

3 Taxonomy-aware evaluation

This section aims to answer RQ1 (“Can we explain the variations observed when
testing several graph models on overall accuracy, item exposure, and user fairness
separately?”) by showing how the proposed taxonomy of graph strategies can
explain the recommendation evaluation on CP-Fairness and overall accuracy.
We experiment with 48 hyper-parameter configurations to investigate various
combinations of graph CF techniques for message-passing, explored nodes, edge
weighting, and latent representations. Results refer to the Amazon Men dataset
and top-20 lists (Table 2). Please note that we report the best metric result for
each <dimension, value> pair (the corresponding best graph recommendation
model is displayed below each metric result) to ease the interpretation of results
and provide meaningful insights.

• Message-passing. We investigate the two widely-recognized message-passing
strategies: implicit and explicit. The most obvious pattern indicates that both
sets have almost the same number of top-performing models in each of the
evaluation criteria. Explicit graph approaches perform better on item expo-
sure, where they outperform implicit techniques (i.e., on Gini and APLT ) two
out of three times by a significant margin. On the one hand, this tendency
may be due to the absence of a direct message (information) propagating along
the user-item graph in implicit techniques, which prevents the user node from
exploring vast item segments. On the other hand, it appears that models from
both families perform similarly on accuracy and user fairness, indicating that
there is no obvious reason to favor implicit over explicit or vice versa.

• Explored nodes. Here, we examine four methods to explore nodes (adopting
the message-passing re-formulation from Equation (2)): same and different,
with 1 and 2 hops. Similarly to the trend found for the message-passing di-
mension, the results demonstrate that the two primary categories (same and
different) are nearly equally performing across all measurements, with same-2
and different-1 being the prominent ones. In detail, the different-1 exploration
outperforms the same-2 on the overall accuracy level (GFCF is the leading
model here). Conversely, same-2 is the best strategy for item exposure (with
LR-GCCF and GAT-CF leading). As observed for the message-passing, user
fairness does not give a reason to choose between same and different. The ex-
ploration of 1 hop in same and different settings is the preferable technique,
even if 2 hops connections lead to a better item exposure.
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Table 2: Best metric results (and corresponding graph CF model) for each <di-
mension, value> pair, on the Amazon Men dataset for top-20 lists. Bold is used
to indicate the best result in the pairs having a two-valued dimension, while † is
used only for the “explored nodes” dimension to indicate also the best results on
same and different. The symbols

x and
y indicate whether better stands for high

or low values. We use “rank ” and “rat” as the UMADrank@k and UMADrat@k.
Dimensions Values Overall Accuracy Item Exposure User Fairness

Recall
x nDCG

x EFD
x Gini

x APLT
x rank

y rat
y

Message
passing

implicit 0.1222
(GFCF)

0.0911
(GFCF)

0.2615
(GFCF)

0.2871
(UltraGCN)

0.1808
(UltraGCN)

0.0123
(UltraGCN)

0.0022
(UltraGCN)

explicit 0.1223
(LR-GCCF)

0.0884
(LR-GCCF)

0.2536
(LR-GCCF)

0.5090
(LR-GCCF)

0.3823
(GAT-CF)

0.0002
(DGCF)

0.0169
(LightGCN)

Explored
nodes

same-1 0.1221†
(LR-GCCF)

0.0884†

(LR-GCCF)
0.2500†

(LR-GCCF)

0.4377
(LR-GCCF)

0.3433
(GAT-CF)

0.0002†

(DGCF)
0.0022†

(UltraGCN)

same-2 0.1184
(LightGCN)

0.0841
(LightGCN)

0.2380
(LightGCN)

0.5090†

(LR-GCCF)
0.3823†

(GAT-CF)
0.0002†

(DGCF)
0.0209
(NGCF)

different-1 0.1222†

(GFCF)
0.0911†

(GFCF)
0.2615†

(GFCF)
0.4093
(NGCF)

0.3424
(GAT-CF)

0.0002†

(DGCF)
0.0022†

(UltraGCN)

different-2 0.1210
(DGCF)

0.0850
(DGCF)

0.2407
(LightGCN)

0.4934†
(LR-GCCF)

0.3438†
(LR-GCCF)

0.0002†

(DGCF)
0.0388

(LightGCN)

Weighting weighted 0.1210
(DGCF)

0.0857
(DGCF)

0.2428
(DGCF)

0.3240
(DGCF)

0.3823
(GAT-CF)

0.0002
(DGCF)

0.0301
(DGCF)

unweighted 0.1223
(LR-GCCF)

0.0884
(LR-GCCF)

0.2536
(LR-GCCF)

0.5090
(LR-GCCF)

0.3438
(LR-GCCF)

0.0101
(GCN-CF)

0.0169
(LightGCN)

Latent
representations

emb-64 0.1193
(LR-GCCF)

0.0871
(LR-GCCF)

0.2479
(LR-GCCF)

0.5090
(LR-GCCF)

0.3627
(GAT-CF)

0.0002
(DGCF)

0.0054
(UltraGCN)

emb-128 0.1221
(LR-GCCF)

0.0883
(LR-GCCF)

0.2536
(LR-GCCF)

0.5090
(LR-GCCF)

0.3644
(GAT-CF)

0.0002
(DGCF)

0.0111
(UltraGCN)

emb-256 0.1223
(LR-GCCF)

0.0884
(LR-GCCF)

0.2532
(LR-GCCF)

0.5038
(LR-GCCF)

0.3823
(GAT-CF)

0.0002
(DGCF)

0.0022
(UltraGCN)

• Weighted. This study examines weighted and unweighted graph CF tech-
niques. Differently from above, we observe that unweighted solutions pro-
vide the best performance on almost all CP-fairness metrics, with LR-GCCF
steadily being the superior approach. The only trend deviation refers to GAT-
CF (i.e., a weighted method) surpassing unweighted solutions on the APLT
level, that is, recommending items from the long-tail. The behavior is likely
attributable to the design of weighted techniques, which can investigate far-
ther neighbors of the ego node (observe the performance of GAT-CF on the
same-2 dimension), leading user profiles to match distant (and possibly niche)
products in the catalog. On the contrary, it is interesting to notice how the
other two metrics accounting for item exposure (i.e., EFD as item novelty
measure and Gini as item diversity measure) seem to privilege unweighted
graph techniques (i.e., LR-GCCF). The observed behaviors differ as the three
metrics provide completely different perspectives of the item exposure, and
thus they are uncorrelated.
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• Latent representations. We compare the performance of graph CF tech-
niques adopting latent representations with 64, 128, and 256 features, respec-
tively. It is worth noticing that higher latent representations (i.e., 128 and
256 ) result in better performance on all measurements. Specifically, it appears
that the 128 dimension is the turning point after which the trend becomes
stable (i.e., the metric values for 128 and 256 are frequently comparable).
This may be an important insight since the majority of research works in re-
cent literature tend to employ 64 -embedded representations of nodes without
exploring further dimensionalities (see Table 1 as a reference).

4 Trade-off Analysis

This section analyses how the graph CF baselines balance the trade-off among
accuracy, item exposure, and user fairness, and aims to answer RQ2 (“How and
why nodes representation and neighborhood exploration algorithms can strike a
trade-off between overall accuracy, item exposure, and user fairness?”). Due to
space constraints, we report the results only for the Amazon Men dataset. The
negative Pearson correlation values for accuracy/item exposure (nDCG/APLT )
and accuracy/user fairness (nDCG/UMADrank) suggest that a trade-off may
be necessary, and desirable. In addition, the same correlation metric indicates
the necessity of a trade-off for item exposure/user fairness (APLT/UMADrank).
Among the strategy patterns identified in the proposed taxonomy (see Table 1),
we select the most important architectural dimensions, message-passing and
weighting of graph edges, to conduct this study. In detail, the analysis studies
three combined categories: (1) models with implicit message-passing (denoted as
implicit); (2) models with explicit message-passing and neighborhood weighting
(denoted as explicit/weighted); (3) models with explicit message-passing with-
out neighborhood weighting (denoted as explicit/unweighted). For each analyzed
trade-off, we select the Pareto optimal solutions3 of the baselines laying on the
model-specific Pareto frontier [24]. Figure 2 plots graph models Pareto frontiers
in the common objective function spaces related to the considered trade-offs.
The careful reader may notice the different axis’ scales across the graphics due
to the metric values. The colors of Pareto optimal solutions are model-specific,
while the line style is used to distinguish the categories: dotted lines for implicit,
dash-dot lines for explicit/weighted, and dashed lines for explicit/unweighted.

• Accuracy/Item Exposure. Figure 2a shows that the explicit/weighted mod-
els exhibit a trade-off, as they maximize either nDCG (i.e., DGCF) or APLT
(i.e., GAT-CF), but not both. This is expected since DGCF is designed as
a version of GAT-CF with improved accuracy. It is worth mentioning that
DGCF’s trade-off is reached at the expense of item exposure. In contrast to
these models, explicit/unweighted baselines show a balanced trade-off because

3 A solution is Pareto optimal if no other solution can improve an objective without
hurting the other one.
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Fig. 2: Overall Accuracy/Item Exposure, Overall Accuracy/User Fairness, and
Item Exposure/User Fairness trade-offs on Amazon Men, assessed through
nDCG/APLT, nDCG/UMADrank, and APLT/UMADrank, respectively. Each
point depicts a model hyper-parameter configuration set belonging to the corre-
sponding Pareto frontier. Colors refer to a particular baseline, while lines styles
discern their technical strategies based on the proposed taxonomy. Arrows indi-
cates the optimization direction for each metric on x and y axes.
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they do not prioritize accuracy or item exposure exclusively. In detail, LR-
GCCF provides the best performance in terms of nDCG and APLT simul-
taneously. From a visual inspection, LR-GCCF’s Pareto frontier dominates
those of the other explicit/unweighted models. Conversely, GCN-CF exhibits
the worst trade-off because it is neither ideal for nDCG nor APLT. As for
the implicit models, they appear to prioritize precision over the provision of
long-tail items. Under this lens, the latest (i.e., implicit) approaches seem to
increase accuracy, even if this is to the detriment of the niche items exposure.

• Accuracy/User Fairness. To ease the interpretation of Figure 2b, we recall
that UMADrank (used to measure User Fairness) measures to what extent
the model ranking performance differs among the user groups (partitioned
based on their activity on the platform). Figure 2b shows that, for GAT-CF
and GCN-CF, the poor performance in terms of nDCG is associated with
high variability in terms of user fairness. In fact, for these two models, the
UMADrank value indicates high variability across user groups. Something dif-
ferent emerges for models such as NGCF, LightGCN, LR-GCF, and GFCF.
These models, GFCF in particular, exhibit valuable recommendation accuracy
with better stability in terms of ranking performance across the different user
groups. As a consequence, the Pareto frontiers associated with these models
dominate the others. In detail, GFCF is the best-performing one regarding
this trade-off. Conversely, UltraGCN and DCGF do not show consistent be-
havior demonstrating a strong sensitivity to the chosen hyper-parameters set.
In this setting, no graph CF strategy emerges as the absolute winner. Specif-
ically, every graph CF strategy is not enough to guarantee adequate fairness
among different user groups. Then, the positive results are associated with par-
ticular configurations of some models and are lost when the hyper-parameter
set changes.

• Item Exposure/User Fairness. The trade-off indicates to what extent
graph CF models can treat final users fairly and recommend items from the
long tail. In Figure 2c, it is possible to identify two groups of baselines: the
models that show poor performance in terms of item exposure (UltraGCN,
DGCF, GCN-CF, and GFCF) and the models that exhibit an acceptable ex-
posure for long-tail items (LightGCN, NGCF, LR-GCCF, and GAT-CF). In
detail, a cluster of models that belong to the explicit/unweighted category
stands out in this second group. Not only are these models able to recom-
mend niche items, but also they are stable (among the user groups) in terms
of accuracy. On the contrary, although GAT-CF lies close to the utopia point4,
it exhibits greater variability regarding the accuracy metric. Indeed, compar-
ing Figure 2c with Figure 2a, GAT-CF demonstrates to achieve adequate
user fairness, but its performance is still very poor in terms of accuracy. To
summarize, even if a system designer could be more interested in promoting
models solely guaranteeing the best value for APLT (Producer Fairness), the
explicit/unweighted strategies can generally ensure a satisfactory (for Con-
sumers and Producers) trade-off between user fairness and item exposure.

4 The point that simultaneously minimizes (maximizes) all the metrics.
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5 Conclusion and Future work

We assess the performance of graph CF models on Consumer and Producer (CP)-
fairness metrics showing that their superior accuracy capabilities is reached at
the expense of user fairness, item exposure, and their combination. By recog-
nizing nodes representation and neighborhood exploration as the two main di-
mensions of a novel graph CF taxonomy, we study their influence on CP-fairness
and overall accuracy separately and simultaneously. The outcomes raise concerns
about the effective application of recent approaches in graph CF (e.g., implicit
message-passing techniques). On such basis, we are performing further investi-
gations on other datasets and algorithms, and we are working on new graph
models balancing accuracy and CP-Fairness.

A Experimental Settings and Protocols

Datasets. As a pre-processing stage, for each dataset, we randomly sample 60k
interactions and drop users and items with less than five interactions to avoid the
cold-start effect [12, 13]. The final dataset statistics are: (1) Baby has 5,842 users,
7,925 items, 35,475 interactions; (2) Boys & Girls has 3,042 users, 12,912 items,
35,762 interactions; (3) Men has 3,909 users, 27,656 items, 51,519 interactions.
Reproducibility. Datasets are split using the 70/10/20 train/validation/test
hold-out strategy. Baselines are trained through grid search (48 explored config-
urations), with a batch size of 256 and 400 epochs. Datasets and codes (imple-
mented with Elliot [2]) are available at this link.
Evaluation. As for the overall accuracy, we use the recall (Recall@k) and the
normalized discounted cumulative gain (nDCG@k). Concerning the item expo-
sure, we focus on: (1) item novelty [37, 38] through the expected free discovery
(EFD@k) measuring the expected portion of relevantly-recommended items
that have already been seen by the users; (2) item diversity [32] with the 1’s
complement of the Gini index (Gini@k), a statistical dispersion measure which
estimates how a model suggests heterogeneous items to users; (3) the average per-
centage of items from the long-tail (APLT@k) which are recommended in users’
lists [1] to calculate recommendation’s bias towards popular items. User fairness
indicates how equally each user group receives accurate recommendations. Users
are split into quartiles based on the number of items they interacted with. We
then measure UMADrat@k and the UMADrank@k [9], where the former stands
for the average deviation in the predicted ratings among users groups, while the
latter represents the average deviation in the recommendation accuracy (cal-
culated in terms of nDCG@k) among users groups. The best hyper-parameter
configurations are found by considering Recall@20 on the validation.
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