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ABSTRACT

Multimodal-aware recommender systems (MRSs) exploit multi-
modal content (e.g., product images or descriptions) as items’ side
information to improve recommendation accuracy. While most of
such methods rely on factorization models (e.g., MFBPR) as base
architecture, it has been shown that MFBPR may be affected by
popularity bias, meaning that it inherently tends to boost the rec-
ommendation of popular (i.e., short-head) items at the detriment of
niche (i.e., long-tail) items from the catalog. Motivated by this as-
sumption, in this work, we provide one of the first analyses on how
multimodality in recommendation could further amplify popularity
bias. Concretely, we evaluate the performance of four state-of-the-
art MRSs algorithms (i.e., VBPR, MMGCN, GRCN, LATTICE) on
three datasets from Amazon by assessing, along with recommen-
dation accuracy metrics, performance measures accounting for
the diversity of recommended items and the portion of retrieved
niche items. To better investigate this aspect, we decide to study
the separate influence of each modality (i.e., visual and textual) on
popularity bias in different evaluation dimensions. Results, which
demonstrate how the single modality may augment the negative
effect of popularity bias, shed light on the importance to provide a
more rigorous analysis of the performance of such models.
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Figure 1: Short-head and long-tail items from the Office
dataset in the Amazon catalog.
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1 INTRODUCTION

The massive availability of digital data (e.g., images, texts, audio
tracks) on the Internet has recently favored the raising of a novel
family of recommender systems (RSs), known as multimodal-aware
recommender systems (MRSs). With the integration of multimodal
features (extracted through pre-trained deep learning models [26,
30, 51]) as items’ side information,MRSs can generatemore accurate
recommendations than traditional collaborative filtering [17, 61, 66]
(CF) algorithms by providing a countermeasure to common issues
such as the sparsity of the user-item matrix and the cold-start
scenario [27, 49, 56], or the inexplicability of users’ preferences in
the implicit feedback setting [15, 22, 23, 38, 39].

The vast majority of MRSs are generally based upon the famous
matrix factorization with bayesian personalized ranking (MFBPR)
recommendation model. On the one hand, matrix factorization [34]
(MF) is a latent-factor approach that maps users and items in the
recommendation system to embeddings in the latent space and is
trained to reconstruct the user-item interaction matrix via the dot
product of the respective factors. On the other hand, bayesian per-
sonalized ranking [52] (BPR) is an optimization schema that drives
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from the assumption that, for each user, the predicted score of posi-
tive (i.e., interacted) and negative (i.e., non-interacted) items should
diverge. Given its simple implementation and efficacy, MFBPR has
long constituted the backbone of recommendation algorithms in
CF [28, 29, 44], not only for multimodal recommendation.

Nevertheless, recommender systems (such as MFBPR) may be
affected by popularity bias [2, 6, 10, 31] (Figure 1), as they tend
to boost the recommendation of the items from the short-head
(i.e., the popular ones) at the expense of the items from the long-
tail (i.e., the niche ones). Tackling popularity bias in recommen-
dation has primarily followed four directions [14]: (i) regulariza-
tion techniques [2, 19, 32], (ii) adversarial learning [36], (iii) causal
graphs [59, 67, 68], and (iv) other item re-ranking approaches [1, 3].

Despite the growing interest in popularity bias [5, 21] and poten-
tial solutions to address it, to date, very limited effort has been put
into investigating how multimodal side information in MRSs
could amplify the negative effects of popularity bias. To the
best of our knowledge, three recent works discussed the concept of
bias in multimodal-aware recommendation. First, Liu et al. [40] take
into account the bias towards a single modality in multimodal rec-
ommendation, and propose a solution based upon causal inference
and counterfactual reasoning; however, the definition they provide
about bias is conceptually different from the one of popularity bias.
Then, Kowald and Lacic [35] consider popularity bias in the case
of multimedia recommendation datasets (e.g., MovieLens); how-
ever, they do not support their findings by testing recommender
systems leveraging multimodal features as items’ side information.
Last, Malitesta et al. [43] investigate how novelty and diversity
metrics are influenced in multimodal recommendation, but without
a finer-grained analysis on the impact of each single modality.

Driven from the assumptions above, and differently from the
related literature, we propose one of the first analyses on how
multimodal-aware recommender systems may amplify popularity
bias in the produced recommendation lists. To this aim, we select
four established and recent multimodal-aware recommender sys-
tems from the literature (i.e., VBPR [27], MMGCN [63], GRCN [62],
and LATTICE [66]) and train them on three categories of the Ama-
zon recommendation dataset [46] (i.e., Office, Toys, and Clothing).
Then, we evaluate the performance of the models by assessing
metrics accounting for recommendation accuracy and popularity
bias (the latter is measured through the diversity of recommenda-
tion lists and the percentage of retrieved items from the long-tail).
Finally, to tailor our investigation, we focus on the separate im-
pact of each multimodal side information (i.e., visual or textual)
on popularity bias. To conduct this further study, we train the se-
lected recommender systems when integrating either the visual
or the textual modality as items’ side information, and study the
performance on single metrics and across pairs of metrics.

We seek to answer: RQ1. How do multimodal-aware recommen-
dation models behave in terms of accuracy, diversity, and popularity
bias? RQ2. What is the influence of each modality (i.e., visual, tex-
tual, multimodal) on such performance measures? Results widely
show that the integration of a single modality (with respect to the
multimodal setting) is capable of amplifying the negative effects
of popularity bias, paving the way to additional, more formal in-
vestigations on multimodal recommendation. We release the code
at: https://github.com/sisinflab/MultiMod-Popularity-Bias.

2 RELATEDWORK

This section outlines the related literature about multimodal learn-
ing and popularity bias in recommendation. First, we provide an
overview of the most popular and recent advances in multimodal-
aware recommendation, from which we select four representative
approaches to analyze. Then, we summarize the concept of pop-
ularity bias, underlining how our work provides one of the first
comprehensive investigations on popularity bias in multimodal
recommendation at the granularity of modalities.
Multimodal-aware recommendation. In various domains such
as fashion [16, 17, 25], music [20, 49, 55], food [37, 47, 58], and
micro-video [13, 18, 63] recommendation, the multimodal content
associated with items (e.g., product images and descriptions, or
audio tracks) has demonstrated to greatly enhance the representa-
tional power of recommender systems.

Following the latest advances in multimodal learning [8, 9, 48],
multimodal-aware recommender systems (MRSs) aim to tackle
some long-term open challenges in personalized recommendation
such as data sparsity and cold-start [27, 49, 56]. Moreover, lever-
aging multimodal content can help reveal underlying user-item
interactions and intents through attention mechanisms, contribut-
ing to the explainability of recommendations [15, 17, 38, 39, 54].

With the recent outbreak of graph neural networks in recom-
mendation [28, 45, 50], several techniques have started integrating
multimodality into the user-item bipartite graphs and knowledge
graphs [11, 28, 53, 57, 60], refining the multimodal representations
of users and items through different approaches implementing
the message-passing schema. While some early attempts involve
simply injecting multimodal item features into the graph-based
pipeline [65], more advanced techniques learn separate graph rep-
resentations for each modality and disentangle users’ preferences
at the modality level [33, 54, 62]. Recent approaches focus on un-
covering multimodal structural differences among items in the cata-
log [41, 42, 66], in some cases by leveraging self-supervised [61, 69]
and contrastive [64] learning.

In this work, we select four popular and recent approaches in
multimodal recommendation, namely, VBPR [27], MMGCN [63],
GRCN [62], and LATTICE [66], and test their performance to assess
the impact of (multi)modalities on popularity bias.
Popularity bias in recommendation. In recommendation, popu-
larity bias refers to the system’s tendency to favor popular items
(i.e., short-head) at the expense of less popular ones (i.e., long-
tail) [2, 6, 10, 12, 31]. For instance, Jannach et al. [31] conduct
a comprehensive algorithmic comparison across multiple datasets;
their findings indicate that existing recommendation methods tend
to concentrate mainly on a small fraction of the available item spec-
trum. More recently, Abdollahpouri et al. [3] delve into this issue
using the well-known MovieLens 1M dataset and reveal that over
80% of all ratings are attributed to popular items; their main focus
lies in finding ways to strike a balance between ranking accuracy
and the coverage of long-tail items.

On such basis, the literature currently recognizes four main
research directions [14] to address popularity bias in recommen-
dation, namely: (i) regularization techniques [2, 19, 32], (ii) adver-
sarial learning [36], (iii) causal graphs [59, 67, 68], and (iv) other
approaches such as item re-ranking [1, 3].

https://github.com/sisinflab/MultiMod-Popularity-Bias
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In multimodal recommendation, only a few recent works discuss
popularity bias, but with specific definitions [40] and neglecting
the impact of multimodal features [35], or on other evaluation met-
rics [43]. Conversely, our analysis assesses how prone multimodal-
aware recommender systems are to push items belonging to the
short-head and how the different modalities affect the tendency to
amplify the popularity bias.

3 BACKGROUND

This section provides useful background notions for our proposed
experimental analysis. To begin with, we introduce the prelim-
inaries about the personalized recommendation scenario. Then,
we focus on factorization-based approaches for recommendation
(such as MFBPR) and present their building formulations. Finally,
we extend the formalism to multimodal-aware recommendation,
by considering the four selected approaches (i.e., VBPR, MMGCN,
GRCN, and LATTICE) and their rationales.

3.1 Preliminaries

LetU and I be the set of users and items in the recommendation
system, respectively, where their cardinalities are indicated as |U|
and |I |. Then, letX ∈ R |U |× |I | be the user-item interaction matrix,
where 𝑥𝑢𝑖 = 1 if user 𝑢 interacted with item 𝑖 , 0 otherwise. On such
basis, we also introduce R = {(𝑢, 𝑖) | 𝑥𝑢𝑖 = 1} as the set of recorded
user-item interactions (|R | is its cardinality).

3.2 Factorization-based approaches

Currently, the majority of state-of-the-art recommender systems
in collaborative filtering follow the matrix factorization [34] (MF)
rationale. Despite the different building solutions they propose,
the core idea is to map users’ and items’ IDs to embeddings in the
latent space. Specifically, we indicate with e𝑢 ∈ R𝑑 and e𝑖 ∈ R𝑑 the
embeddings for user 𝑢 and item 𝑖 , respectively, with 𝑑 << |U|, |I |.
Then, given a pair of user and item (𝑢, 𝑖), the predicted interaction
score is:

𝑥𝑢𝑖 = e⊤𝑢 e𝑖 . (1)

To learn such embeddings, MF-based approaches are usually
coupled with bayesian personalized ranking [52] (BPR). This opti-
mization method assumes that the predicted interaction score for
users and their positive (i.e., interacted) items should be higher than
the predicted interaction score for users and their negative (i.e., non-
interacted) items. Concretely, let T = {(𝑢, 𝑖, 𝑗) | 𝑥𝑢𝑖 = 1 ∧ 𝑥𝑢 𝑗 = 0}
be the set of triples, where each triple consists of a user, a posi-
tive, and a negative item. Bayesian personalized ranking seeks to
optimize the following objective function:

argmax
Θ

∑︁
(𝑢,𝑖, 𝑗 ) ∈T

ln 𝜎 (𝑥𝑢𝑖 − 𝑥𝑢 𝑗 ), (2)

where Θ is the vector containing all model’s parameters (e.g., in
the case of MF, e𝑢 and e𝑖 ), while 𝜎 (·) is the sigmoid function.

3.3 Factorization-based approaches leveraging

multimodal side information

We present the formulations of four state-of-the-art multimodal-
aware recommender systems (MRSs): VBPR [27], MMGCN [63],

GRCN [62], and LATTICE [66]. Before diving into their approaches,
we introduce some additional formalism.

Besides e𝑢 and e𝑖 , hereafter referred to as collaborative user and
item embeddings, we also introduce f𝑢 and f𝑖 as the multimodal
embeddings for user 𝑢 and item 𝑖 . Moreover, we indicate M as
the set of available modalities (e.g., visual, textual, audio), and we
use𝑚 as embedding’s apex to denote that the embedding refers
to the𝑚 ∈ M modality (e.g., f𝑚

𝑖
stands for the𝑚-th multimodal

embedding of item 𝑖).
VBPR.Visual-bayesian personalized ranking [27] (dubbed as VBPR)
adopts visual features extracted from product images as items’ side
information in MFBPR. The authors introduce, along with user
and item collaborative embeddings, additional visual user and item
embeddings, where the latter is obtained as the activation of the
penultimate layer from a pre-trained convolutional neural network.
Then, the collaborative and visual embeddings are used tomeasure a
collaborative- and visual-aware prediction for the interaction score
and are eventually summed to obtain the final prediction score.
In this work, we follow [66] and adapt VBPR to multimodality by
concatenating the visual and textual item features to generate a
unique multimodal representation of the item:

𝑥𝑢𝑖 = e⊤𝑢 e𝑖 + f⊤𝑢 𝑡 (f𝑖 ) with f𝑖 = ∥
𝑚∈M

f𝑚𝑖 , (3)

where 𝑡 is a projection function such that the latent dimensions of
the multimodal user and item embeddings match.
MMGCN. One of the first approaches leveraging the representa-
tional power of graph convolutional networks (GCNs) with multi-
modal content is multimodal graph convolution network for rec-
ommendation [63] (dubbed as MMGCN). By designing one GCN
for each modality, the model learns the different preferences users
have towards each representation of the items. Finally, to fuse all
multimodal representations into one for both users and items em-
beddings, the authors adopt the element-wise addition, and the
predicted interaction score is calculated via the dot product:

𝑥𝑢𝑖 = f⊤𝑢 f𝑖 with f𝑢 =
∑︁

𝑚∈M
𝑐 (e𝑢 , 𝑔(f𝑚𝑢 ), 𝑡 (f𝑚𝑢 , e𝑢 )), (4)

where 𝑐 and 𝑔 are a combination and GCN-based functions. We
report only the user-side formulation for the sake of space.
GRCN. Similarly to MMGCN, graph-refined convolutional network
for multimedia recommendation [62] (dubbed as GRCN) utilizes
a GCN-architecture to update user and item embeddings. Specifi-
cally, the adjacency matrix entries are refined by pruning the noisy
user-item interactions according to the preference of users toward
each item’s modality. Collaborative and multimodal versions of the
user and item embeddings are eventually combined through con-
catenation to estimate the interaction score via their dot product:

𝑥𝑢𝑖 = f⊤𝑢 f𝑖 with f𝑢 = 𝑔(e𝑢 , f𝑚𝑢 ,∀𝑚 ∈ M) ||
(
∥

𝑚∈M
𝑡 (f𝑚𝑢 )

)
.

(5)
Again, we report only the user-wise formulation for lack of space.
LATTICE. Latent structure mining method for multimodal rec-
ommendation [66] (dubbed as LATTICE) performs graph structure
learning on multiple modality-aware item-item graphs (one for
each modality). The obtained adjacency matrices are aggregated
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Table 1: Statistics of the tested datasets.

Datasets |U| |I| |R| Sparsity (%)

Office 4,905 2,420 53,258 99.5513
Toys 19,412 11,924 167,597 99.9276
Clothing 39,387 23,033 278,677 99.9693

through weighted element-wise addition, and the final adjacency
matrix is exploited to perform graph convolution to update the
representation of the collaborative item embeddings. Then, this
updated version is added to the initial collaborative item embed-
ding. Finally, the dot product between the collaborative user and
(updated) item embeddings predicts the interaction score:

𝑥𝑢𝑖 = e⊤𝑢 f𝑖 with f𝑖 = e𝑖 +
𝑔(e𝑖 , f𝑚𝑖 ,∀𝑚 ∈ M)

||𝑔(e𝑖 , f𝑚𝑖 ,∀𝑚 ∈ M)||2
, (6)

where𝑔 is a LightGCN [28] architecture performing graph structure
learning as stated above.

4 PROPOSED ANALYSIS

In this section, we present the details to conduct our analysis. Ini-
tially, we report on the used datasets, describing the methodologies
employed for extracting multimodal features. Subsequently, we
introduce and formally define the evaluation metrics employed,
encompassing accuracy, diversity, and popularity bias. Finally, we
provide a thorough summary of the reproducibility information
for our study, detailing the methods used for dataset splitting and
filtering as well as the strategy for hyperparameter search.

4.1 Datasets

he multimodal recommender systems have been tested on three
popular [17, 33, 66, 69] datasets from the Amazon catalog [46]: Of-
fice Products (Office), (b) Toys & Games (Toys), and (c) Clothing,
Shoes & Jewelry (Clothing). The multimodal datasets provide both
images and descriptions for each available item. Specifically, we uti-
lize the pre-extracted 4,096-dimensional visual features [24] which
are made publicly available1. For the textual modality, we follow the
existing literature [66], which aggregates the item’s title, descrip-
tions, categories, and brand, thereby generating textual embeddings
by leveraging sentence transformers [51]. The generated features
are 1,024-dimensional embeddings. Additional dataset information
can be found in Table 1.

4.2 Evaluation metrics

In the proposed study, we refer to various metrics that may bring
out additional insights which have not been investigated yet in
multimodal recommendation. Indeed, we do not solely rely on
accuracy metrics (i.e., Recall and nDCG) but also on diversity (i.e.,
item coverage) and popularity bias (i.e., APLT) metrics. The metrics
listed hereinafter are calculated on top-𝑘 recommendation lists.
Recall. The Recall assesses the system’s capacity to retrieve rele-
vant items from the recommendation list, highlighting the need for

1https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html.

thorough coverage to the list of user interactions [7]:

Recall@𝑘 =
1
|U|

∑︁
𝑢∈U

|Rel𝑢 @𝑘 |
|Rel𝑢 |

, (7)

where Rel𝑢 indicates the set of relevant items for user 𝑢, while
Rel𝑢 @𝑘 is the set of relevant recommended items in the top-𝑘 list.
Normalized discount cumulative gain. The normalized discount
cumulative gain (nDCG) considers the relevance and the ranking
position of recommended products, taking into account the varied
degrees of relevance:

nDCG@𝑘 =
1
|U|

∑︁
𝑢

DCG𝑢@𝑘

IDCG𝑢@𝑘
, (8)

where DCG@𝑘 =
∑𝑘
𝑖=1

2𝑟𝑒𝑙𝑢,𝑖 −1
log2 (𝑖+1)

quantifies the cumulative gain of
relevance scores through the recommended list, with 𝑟𝑒𝑙𝑢,𝑖 ∈ Rel𝑢 ,
and IDCG represents the cumulative gain of relevance scores for a
perfect (ideal) recommender system.
Item coverage. The item coverage (abbreviated “iCov” in the fol-
lowing) gives information on the coverage (item-side) measured in
recommendation lists. A higher item coverage suggests that a larger
fraction of the item space is being scrutinized and recommended to
consumers, implying a more comprehensive coverage of user pref-
erences and potentially a more comprehensive recommendation
experience. In particular, we have:

iCov@𝑘 =
|⋃𝑢 Î𝑢@𝑘 |
|I𝑡𝑟𝑎𝑖𝑛 |

, (9)

where Î𝑢@𝑘 is the list of top-𝑘 recommended items for a user 𝑢.
Average percentage of long-tail items. The average percentage
of long-tail items (APLT) is a measure used to assess the presence
of popularity bias in recommendation systems [2]. Popularity bias
refers to the tendency of recommendation algorithms to priori-
tize popular or mainstream items over less well-known or niche
items. This bias can lead to limited exposure of users to diverse and
personalized recommendations. The metric measure the percent-
age of items belonging to the medium/long-tail distribution in the
recommendation lists averaged over all users:

APLT@𝑘 =
1
|U|

∑︁
𝑢∈U

|{𝑖 | 𝑖 ∈ (Î𝑢@𝑘 ∩ ∼ Φ)}|
𝑘

, (10)

where Φ is the set of items belonging to the short-tail distribution
while ∼ Φ is the set of items from the medium/long-tail distribution.
Note that we decide to integrate the evaluation of the APLT along
with the iCov (introduced above) because the latter may be func-
tional to provide a complete interpretation of the former. Indeed,
following their definitions and formulations, the two metrics are
conceptually related.
Metrics value interpretation An ideal recommender system
should increase all the metrics listed above according to the princi-
ple “higher is better” to boost accuracy and diversity while reducing
the popularity bias of the produced recommendations. Neverthe-
less, with the current work, we try to unveil whether and why
multimodal-aware recommender systems are affected by pop-
ularity bias. Thus, in the following, we will take into account
those settings in which accuracy is high, while diversity and
popularity bias are low (according to the metrics definitions).

https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html
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4.3 Reproducibility

We investigate the models’ behavior in three different settings:
(i) visual modality, in which we employ only visual features, (ii)
textual modality, in which we employ only textual features, and (iii)
multimodal, where both modalities are considered and combined.

In the first step, we evaluate the models in the multimodal set-
ting which is the same setting as the original one for each tested
approach. Then, we focused on quantifying the singular modality
influence on the multimodal scenario in terms of accuracy, diver-
sity, and popularity bias. Furthermore, to ensure the reproducibility
of our work, in the following, we provide comprehensive details
regarding the preprocessing and splitting of the datasets, as well as
the tuning and evaluation of the models.

The datasets are filtered using the 𝑝-core strategy, where we set
𝑝 to 5. Subsequently, we employ an 80%/20% train-test hold-out
strategy to split the dataset. During the hyper-parameter tuning
phase, we further divide the test set by removing 50% of its in-
stances for the validation, specifically evaluating the results using
the Recall@20 metric (as in the original work). In terms of mod-
els’ training, we set the maximum number of epochs to 200 and
select the model weights based on the epoch that yields the best
performance on the validation set.

The code is implemented in Elliot [4]. Note that the explored
hyper-parameter values are not entirely aligned with the ones in
the original papers and codes. Indeed, we want to tune the selected
baselines on an extensive, shared set of hyper-parameter values
across all models for the sake of fair comparison.

5 RESULTS AND DISCUSSION

In this section, we answer the following research questions (RQs):
RQ1. How do the selected multimodal-aware recommendation mod-

els behave in terms of accuracy, diversity, and popularity bias?
Section 5.1 investigates the recommendation performance in
terms of accuracy (i.e., Recall, nDCG), diversity (i.e., iCov),
and popularity bias (i.e., APLT). Note that, for the sake of
completeness, we also report the performance of a recom-
mender system generating recommendations in a random
manner (i.e., Random) or based upon the most popular items
in the catalog (i.e., MostPop); then, we train and evaluate
MFBPR, that is the building model of the other multimodal
baselines. We regard the performance of Random, MostPop,
and MFBPR as a reference for the other multimodal-aware
recommender systems we want to analyze.

RQ2. What is the influence of each modality setting (i.e., visual, tex-
tual, multimodal) on such performance measures? Section 5.2
takes a step further by analyzing how each modality (i.e., vi-
sual, textual, and multimodal) influences accuracy, diversity,
and popularity bias; the evaluation is conducted both on the
single metric and across pairs of metrics.

5.1 Recommendation accuracy, diversity, and

popularity bias (RQ1)

The results of the accuracy, diversity, and popularity bias metrics are
reported in Table 2. The measured values refer to top@10, top@20,
and top@50 recommendation lists. In the following, we discuss the
obtained results considering the three metrics families separately.

Accuracy. Overall, LATTICE is the top-performing model, in align-
ment with the recent literature [66]. Indeed, its ability to learn more
refined items’ embeddings based upon the multimodal item-item
similarities may positively impact the accuracy performance. Con-
versely, VBPR’s outstanding performance with respect to the other
multimodal approaches comes as quite a surprise, considering that
more complex and recent models leveraging graph neural networks
(such as MMGCN and GRCN) do not outperform it.

Considering the performance on a dataset level, the most signifi-
cant variation in metrics between LATTICE and VBPR is observed
on Toys and Clothing, while the difference is reduced on Office.
Notably, Toys and Clothing store three and four times more inter-
actions than Office, respectively, but they are much sparser. This
emphasizes LATTICE’s ability to recommend more accurate items
despite the higher dataset sparsity. Assessing the other models’
performance, MMGCN works exceptionally well on Toys but shows
the lowest performance as the number of interactions and spar-
sity increase. GRCN, in contrast, excels with highly sparse data,
exhibiting an opposite trend to MMGCN.

From a metric-wise analysis, LATTICE outperforms VBPR in
correctly predicting relevant items (high Recall) that are more likely
to appear at the top of the recommendation lists (nDCG). However,
the same trend is not as evident on the Recall, partly due to its
normalization w.r.t. the 𝑘 recommended items, which can lead to a
smaller difference between LATTICE and VBPR as 𝑘 increases.
Diversity. As far as recommendation diversity (i.e., iCov) is con-
cerned, the worst-performing model is MMGCN, since its iCov is,
in any case, negatively out of scale compared to the other models.
For instance, when taking into account Office, MMGCN’s iCov is
slightly better than MostPop (whose item diversity is, by construc-
tion, the lowest) demonstrating a restricted ability to engage diverse
items in the recommendation lists. Unexpectedly, the second-worst
model is LATTICE, even if its performance is still more balanced to
the other approaches than MMGCN’s one. Indeed, we observe that
while MMGCN is affected by poor accuracy due to the lack of item
diversity, LATTICE can deal with both accuracy and diversity.

As an opposite (but noteworthy) trend, we underline that VBPR
and GRCN are generally capable of recommending a wider portion
of items thanMMGCN and LATTICE, independently on the selected
top-𝑘 . Overall, their iCov values are quite comparable to the ones
of Random, which should provide (by definition) the highest item
coverage from the catalog. We intend to further investigate (and
justify) this aspect by assessing the effects of popularity bias.
Popularity bias. In terms of popularity bias (i.e., APLT), the worst
and second-worst models are once again MMGCN and LATTICE
(the former on Office and Clothing, while the latter on Toys). As
already discussed in Section 4.2, it makes sense to conceptually
bind iCov and APLT. When assessing MMGCN’s performance on
Office, it becomes clear how the model is recommending only a
few items (see again the iCov) while achieving good results in
terms of accuracy; this demonstrates how the user-item interactions
from Office may likely be biased towards popular items, and the
phenomenon is even amplified due to the dataset small size. The
same does not hold on Clothing where MMGCN, usually prone
to popularity bias, gets also really low performance in terms of
accuracy. Conversely, LATTICE can recommend popular items
thus pushing its accuracy performance without amplifying the
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Table 2: Results in terms of recommendation accuracy (Recall, nDCG), diversity (iCov) and popularity bias (APLT). For accuracy

metrics, ↑means better performance, while ↓means less diversity and more popularity bias. We remind that, while iCov and

APLTmetrics would generally adhere to the principle of “higher is better” (↑) for an ideal recommender system, in this work we

consider the opposite as we want to emphasize which models are performing worst in terms of diversity and popularity bias.

Datasets Models

top@10 top@20 top@50

Recall↑ nDCG↑ iCov↓ APLT↓ Recall↑ nDCG↑ iCov↓ APLT↓ Recall↑ nDCG↑ iCov↓ APLT↓

Office

Random 0.0034 0.0020 2,414 0.5950 0.0079 0.0034 2,414 0.5948 0.0220 0.0068 2,414 0.5924
MostPop 0.0302 0.0208 20 0.0000 0.0533 0.0282 32 0.0000 0.1143 0.0439 66 0.0000
MFBPR 0.0602 0.0389 2,268 0.2294 0.0955 0.0500 2,357 0.2379 0.1657 0.0677 2,398 0.2513

VBPR 0.0652 0.0419 2,265 0.2321 0.1025 0.0533 2,354 0.2375 0.1774 0.0721 2,404 0.2469
MMGCN 0.0455 0.0300 74 0.0016 0.0798 0.0405 112 0.0078 0.1575 0.0598 247 0.0205

GRCN 0.0393 0.0253 2,390 0.3438 0.0667 0.0339 2,409 0.3469 0.1250 0.0488 2,414 0.3548
LATTICE 0.0664 0.0449 2,121 0.1752 0.1029 0.0566 2,315 0.2039 0.1780 0.0751 2,397 0.2413

Toys

Random 0.0011 0.0006 11,879 0.4894 0.0021 0.0008 11,879 0.4896 0.0051 0.0015 11,879 0.4902
MostPop 0.0130 0.0075 13 0.0000 0.0229 0.0104 24 0.0000 0.0451 0.0156 56 0.0000
MFBPR 0.0641 0.0403 10,016 0.1167 0.0903 0.0481 10,944 0.1268 0.1394 0.0596 11,544 0.1460

VBPR 0.0710 0.0458 10,085 0.1064 0.1006 0.0545 11,026 0.1180 0.1523 0.0667 11,624 0.1400
MMGCN 0.0256 0.0150 4,499 0.0961 0.0426 0.0200 6,238 0.1058 0.0785 0.0285 8,657 0.1263
GRCN 0.0554 0.0354 11,007 0.2368 0.0831 0.0436 11,609 0.2482 0.1355 0.0559 11,847 0.2679
LATTICE 0.0805 0.0512 8,767 0.0546 0.1165 0.0617 10,285 0.0684 0.1771 0.0759 11,397 0.0950

Clothing

Random 0.0004 0.0002 23,016 0.4487 0.0010 0.0003 23,016 0.4478 0.0024 0.0006 23,016 0.4482
MostPop 0.0089 0.0046 13 0.0000 0.0157 0.0063 24 0.0000 0.0322 0.0095 56 0.0000
MFBPR 0.0303 0.0156 18,414 0.0729 0.0459 0.0195 20,582 0.0824 0.0734 0.0249 22,171 0.1017

VBPR 0.0339 0.0181 19,195 0.0809 0.0529 0.0229 21,251 0.0915 0.0847 0.0292 22,555 0.1112
MMGCN 0.0227 0.0119 1,744 0.0044 0.0348 0.0150 2,864 0.0066 0.0609 0.0201 5,373 0.0121

GRCN 0.0319 0.0164 21,490 0.2358 0.0496 0.0209 22,503 0.2459 0.0858 0.0281 22,954 0.2631
LATTICE 0.0502 0.0275 13,463 0.0134 0.0744 0.0336 17,538 0.0207 0.1186 0.0425 21,458 0.0385

popularity bias phenomenon as much as MMGCN does. Indeed,
even if LATTICE’s iCov is the second-worst across all the datasets,
the metric is always close to the best models in terms of diversity.

Finally, VBPR and GRCN confirm their ability (already observed
on the diversity measure) to tackle also popularity bias in all ex-
perimental settings. Particularly, while we recognize that VBPR
performance is slightly increased with respect to MFBPR in terms
of iCov and APLT (the two approaches are almost similar), GRCN
results are quite remarkable. It might be the case that its graph
edges pruning technique (driven by multimodal signals) is reducing
the influence of noisy user-item interactions (i.e., redundant edges
which might involve popular items), thus helping to diversify the
recommendations by considering also several long-tail items.
Summary. In a standard multimodal setting, LATTICE stands out
for its accuracy performance and ability to handle dataset sparsity,
but at the detriment of amplifying popularity bias; MMGCN struggles
with diversity, exhibits strong popularity bias, and sacrifices accuracy
in certain scenarios; VBPR and GRCN, in different manners, better
manage all the metrics by finding the right compromise among them.

5.2 Modalities influence on recommendation

performance (RQ2)

While the previous section has answered how multimodal recom-
mender systems perform in terms of accuracy, diversity, and popu-
larity bias when leveraging the fullmodalities, in the following, we

discuss the influence of each single modality on the performance.
We consider two evaluation dimensions where modalities influence
is assessed (i) on accuracy, diversity, and popularity bias separately,
and (ii) on pairs of metrics to investigate their joint variations.
Modalities influence on the single metric. Figure 2 displays the
influence of each modality calculated as percentage variation with
respect to the multimodal baseline, on the top@20 recommendation
lists. We select the Recall (Figure 2a), iCov (Figure 2b), and APLT
(Figure 2c) for accuracy, diversity, and popularity bias, respectively.

As regards the accuracy performance (Figure 2a), we notice how
the trend is not consistent across all the datasets and models. Par-
ticularly, when considering Office, we observe that only VBPR and
LATTICE fully exploit multimodality (indeed, their performance
decreases when the modalities are injected separately); on an oppo-
site level, on MMGCN, the visual modality slightly improves the
multimodal setting, while the textual modality even worsens it;
then, GRCN achieves better performance on both the visual and
textual modalities, suggesting that this approach may not take ad-
vantage of the multimodal configuration. On the Toys dataset, the
only textual setting generally improves the performance, bringing
important information to the model learning interaction. The model
benefiting from the single modality the most is MMGCN, which
has an improvement of at least 20% on both visual and textual. For
the remaining models, the trend is quite stable with the textual
and visual modalities improving and reducing the performance,
respectively. Finally, we observe that Clothing is the only dataset
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Figure 2: Percentage variation on the (a) Recall, (b) iCov, and (c) APLT when training the multimodal recommender systems

with either visual or textual modalities. The 0% line stands for the reference performance provided by the multimodal version

of the model. All results refer to the top@20 recommendation lists.

showing consistent trends. Indeed, the visual modality reduces the
Recall while the textual increases it (with the only exception of
VBPR whose percentage variation is negligible).

Differently from the accuracy analysis, we recognize a quasi-
stable trend in the performance variation measured for the diversity
metric (Figure 2b). Considering the Office dataset, each modality’s
contribution is generally irrelevant except for MMGCN, for which
the visual modality slightly improves the coverage across the whole
recommendation list, while the textual one worsens the perfor-
mance by a large margin. Assessing the trend on Toys, both the
modalities decrease the coverage performance of the model when

injected separately in the recommendation pipeline; remarkably,
MMGCN is once again the model affected by the single modality
presence the most, but this time the coverage performance widely
deteriorates because of both the visual and textual modalities. Fi-
nally, on Clothing, both modalities lower the model’s item coverage,
with specific reference to the visual modality.

As the last part of our analysis, we take into account each modal-
ity’s contribution to the popularity bias dimension (Figure 2c). Start-
ing from Office, we notice how both modalities are prone to enforce
popularity bias if injected singularly, with the only exception of
LATTICE whose textual modality limits the popularity bias (the
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Figure 3: Performance analysis on Clothing when comparing (a) Recall vs. APLT, (b) Recall vs. iCov, and (c) iCov vs. APLT for

different modality settings involving the multimodal, visual, and textual modalities. Metrics are on top@20.

APLT increases); this is interesting as we remind that LATTICE is
the second-worst model in terms of popularity bias, but using only
the textual modality reduces its accuracy performance and the influ-
ence of popular items in the recommendation list. When it comes to
the Toys dataset, every single modality enforces the popularity bias
of MMGCN and GRCN; for VBPR, the visual and textual modalities
amplify and reduce the bias, respectively, while for LATTICE both
the visual and textual modalities limit the popularity bias. Finally,
on Clothing, both the modalities show to increase the popularity
bias of the model (but the textual one on VBPR and LATTICE).
Modalities cross-influence on metrics pairs. To conclude, we
discuss the cross-influence of each modality setting (i.e., visual, tex-
tual, and multimodal) on pairs of metrics. In this respect, we decide
to display (Figure 3) the joint trend of (a) accuracy and popularity
bias (i.e., Recall vs. APLT), (b) accuracy and diversity (i.e., Recall vs.
iCov), and (c) diversity and popularity bias (i.e., iCov vs. APLT). We
only report the results on Clothing for top@20 recommendations.

In detail, VBPR and MMGCN are the models being affected by
each specific modality the least, since the performance measures
assessed on visual and textual are generally aligned with the multi-
modal reference. Regarding LATTICE, we notice that the textual
modality has a major accuracy influence with respect to popularity
bias and diversity. Indeed, the textual modality improves the Re-
call without having a relevant effect in terms of iCov and APLT;
conversely, the visual modality reduces the accuracy by jointly
worsening the diversity and the popularity bias. Finally, when con-
sidering GRCN, we observe that the multimodal setting reduces
the popularity bias without affecting the accuracy and diversity.
Summary. In a single modality setting, the textual one improves
the accuracy, while both modalities negatively affect the diversity
and reinforce the popularity bias. When evaluating the modalities’
influence across metrics pairs, the textual modality has a significant
influence on accuracy but minimal effects on diversity and popularity
bias; conversely, the visual modality reduces accuracy and jointly
worsens the popularity bias and diversity.

6 CONCLUSION AND FUTUREWORK

Motivated by the assumption that factorization models in recom-
mendation (such as MFBPR) are affected by popularity bias, in this
work, we provided one of the first systematic analyses on how
multimodal-aware recommender systems (largely built upon MF-
BPR) further amplify the recommendation of popular items. After
having selected four state-of-the-art multimodal recommender sys-
tems, namely, VBPR, MMGCN, GRCN, and LATTICE, we proposed
an exhaustive experimental study involving three datasets from the
Amazon catalog, four metrics spanning three evaluation dimensions
(i.e., accuracy, diversity, and popularity bias), and three modalities
settings (i.e., multimodal, only visual, and only textual). Results
demonstrated that, in a standard multimodal setting, VBPR and
GRCN can strike a better compromise between all evaluated metrics
than MMGCN and LATTICE; furthermore, the separate injection
of the visual and textual modalities can improve the accuracy but
negatively impact the diversity and popularity bias. Conclusively, a
complementary investigation regarding themodalities’ influence on
metrics pairs outlined that the textual modality has a considerable
impact on accuracy but little effect on diversity and popularity bias,
whereas the visual modality reduces accuracy while exacerbating
popularity bias and limiting the diversity. Such findings pave the
way to a more complete study on the performance of these models
and other more recent approaches in multimodal recommendation.
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