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A FORMAL
TAXONOMY OF
GRAPH CF




THE GRAPH CF PIPELINE

4) Output

3a) Explicit message-passing

2a) Latent representation

1) Input
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Mathematical re-formulations/proxies of the message
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A NON-EXHAUSTIVE FORMAL TAXONOMY

Nodes Neighborhood
Representation Exploration
Models Latent . Weighting Explored Mess.age
representation nodes passing
low high weighted — unweighted  same  different  implicit  explicit
NGCF v v v v
DGCF v v v v
Light GCN | v v v v
SGL v v v v
UltraGCN | v v v v
GFCF v v




Node representation indicates the
representation strategy to model users’
and items’ nodes. [t involves the
dimensionality of node embeddings,
and the possibility of weighting the
contributions from neighbor nodes.



Neighborhood exploration refers to the
procedures to explore the multi-hop
neighborhoods of each node to update the
node latent representation. It involves the type
of node-node connections which are explored,
and the type of message-passing schema.
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RULES OF THUMB FOR NODE REPRESENTATION

EMBEDDING
DIMENSIONALITY



FROM THE ORIGINAL PAPERS

Commonly explored dimensionalities for the node embeddings: d € [64, 128,256, ...]. The usually chosen
embedding dimensionality is d = 64.




BENCHMARKS FROM THE LITERATURE (1/2)

3
)
gz When d = 256 the
v 2 recommendation
5 performance seems
o 1 to be higher..

04 128 256
Initial Emb. Dim.

[Wang et al.]



BENCHMARKS FROM THE LITERATURE (2/2)

Dataset Gowalla Yelp2018 Amazon-book
Method recall ndcg trainingtime | recall ndcg trainingtime | recall ndcg training time

LightGCN-64 | 0.1830 0.1554  2.77 x 10%s [ 0.0649 0.0530  5.15x 10%s [ 0.0411 0.0315  1.27 x 10°s
LightGCN-128 | 0.1878 0.1591  3.31x 10*s | 0.0671 0.0550  5.66 X 10%s | 0.0459 0.0353  1.81 x 10%s
LightGCN-256 | 0.1893 0.1606  4.54 X 10%s | 0.0689 0.0568  8.09 X 10%s | 0.0481 0.0371 2.98 x 10%s
LightGCN-512 | 0.1892 0.1604  7.28 X 10*s | 0.0689 0.0569  1.33x 10%s | 0.0485 0.0375  5.26 X 10°s
GF-CF 0.1849 0.1518 30.5s 0.0697 0.0571 46.0s 0.0710 0.0584 65.8s

[Shen et al ] .. but this might not be
. always true and could

come at the expense of
training time.



RULES OF THUMB FOR NODE REPRESENTATION

EMBEDDING INITIALIZATION
DIMENSIONALITY



FROM THE ORIGINAL CODES

Models Strategies
Normal Xavier
NGCF v Normal and Xavier are
DGCF v almost equally -
Light GCN V4 preferrable,
SGL v

UltraGCN v
GFCF




RULES OF THUMB FOR NODE REPRESENTATION

EMBEDDING INITIALIZATION NODE WEIGHTING
DIMENSIONALITY



NOT ALL NEIGHBORS HAVE THE SAME IMPORTANCE

concat/avg /7
> h/
7\ '

[Velickovic et al ]

It might be useful to
weight the contribution
provided by each
neighbour node before
the aggregation.



DISENTANGLING THE NODE REPRESENTATION

Neighbour nodes have
specific features
which might explain
why they interacted
with the ego node.




DISENTANGLING IN GRAPH CF (1/2)

Users

Interactions

Possible Latent Intents
k: passing the time
k;: interest matching
k3: shopping for others

k,4: social events

[Wang et al ]

There might exist
hidden intentions
underlying each

user -item interaction.



DISENTANGLING IN GRAPH CF (2/2)

Graph Disentangling Module

Interaction Graph Intent-aware Graph 4

L mentowarecaphdy, | The node embeddings
wQ u,@ u;0 u;Q u,@ u;0 w0 @) @)

are split into intentions,
and they are trained to
be uncorrelated.

\
50 1O O 4O 5O g 8O w0 &0 U0 0 50 40 O O O O L0 2O UO is

1D Embedding uy Intent-aware

O T oo

[Wang et al ]



RULES OF THUMB FOR NODE REPRESENTATION

EMBEDDING INITIALIZATION NODE WEIGHTING
DIMENSIONALITY

EMBEDDING
NORMALIZATION



FROM THE ORIGINAL CODES

Models Normalize When

NGCF v during .
message-passing

DGCF v during .
message-passing

Light GCN

SGL v after .
message-passing

UltraGCN

GFCF

The 12 normalization seems
to stabilize the training, and
it is performed during or
after the message-passing.



RULES OF THUMB FOR NODE REPRESENTATION

01 02 03

EMBEDDING INITIALIZATION NODE WEIGHTING
DIMENSIONALITY

04 05

EMBEDDING LAYER COMBINATION
NORMALIZATION



FROM THE ORIGINAL CODES

Models How Final dimension

NGCF concat S dy Each layer combination
DGCF mean d comes with a final dimension
Light GCN mean d which may increase the

SGL stack + mean d computational complexity.
UltraGCN

GFCF




BENCHMARKS FROM THE LITERATURE

e B & =

Concat Mean Stack Sum
Layer Combination

[Wang et al.]

Stack and concat seem
to be the highest
recommendation
performance.



MULTIMODAL

FEATURES ON
ITEMS' NODES




RECSYS LEVERAGING MULTIMODAL DATA

Multimodal-aware

5—;3-) ----------- i recommender systems exploit
i vumvobaL o il multimodal (ie, audio, visual,
w M = — ey S textual) data to augment the
S — — o— M representation of items, thus
L e e 0 e tackling known issues such as
E — S " dataset sparsity and the
a— 7 L wOm g NS H inexplicable nature of users
actions (i.e, views, clicks) on

online platforms.



MULTIMODAL EMBEDDINGS

users
o' U - - N
® u b bk I3 lp Is U @
4 [}
w, 0 0 O0o|/0|1]0
(optional) users’ preference
items us | 1 1 1 0 0 0 t‘(ﬁrds each modality
ot » O 1) wlole[ i ol"] ¢ oo NI M
Ol3 lg u

%) O O user -item
O . interaction matrix

multimodal

F ITI

extracted through pre-trained
large models



MULTIMODAL-AWARE RECSYS

Multimodal Multimodal
Models Venue embeddings GNN graphs The recent tendency

U Tt U-T  I-1 . .

o e is to exploit GNN +

VBPR AAAT'16 v v X ltimodal; h
MMGCN MM’19 v v oo/ X multimodality, on the
GRCN MM20 X 4 ooV X user -item and/or the
LATTICE MM’21 X v v X v . . h
BM3 WWW23 X v VA X ltem-1item grapns.
FREEDOM  MM’23 X v v X v




LIGHTGCN AND MULTIMODALITY: HOW TO?

These are not pure
collaborative, but
extracted from
Layer 2 multimodal content

. Normalized Sum : - and trainable

¥ . 2 N
neighbors of u, | \ neighbors of i, /
Light Graph Convolution (LGC)

[Wei et al ]
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TAKE-HOME
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WHAT WE HAVE LEARNED

NODE REPR. &
NEIGHBORHOOD EXPL.
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