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THE GRAPH CF PIPELINE
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A NON-EXHAUSTIVE FORMAL TAXONOMY

Models

Nodes
Representation

Neighborhood
Exploration

Latent
representation

Weighting
Explored
nodes

Message
passing

low high weighted unweighted same di↵erent implicit explicit

NGCF X X X X
DGCF X X X X
LightGCN X X X X
SGL X X X X
UltraGCN X X X X
GFCF X X



Node representation indicates the 
representation strategy to model users’ 
and items’ nodes. It involves the 
dimensionality of node embeddings, 
and the possibility of weighting the 
contributions from neighbor nodes.



Neighborhood exploration refers to the 
procedures to explore the multi-hop 
neighborhoods of each node to update the 
node latent representation. It involves the type 
of node-node connections which are explored, 
and the type of message-passing schema.
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Commonly explored dimensionalities for the node embeddings: d ∈ [64, 128, 256, … ]. The usually chosen 
embedding dimensionality is 𝑑 = 64.

                        𝑑 = 64

𝑑 = 128

𝑑 = 256

FROM THE ORIGINAL PAPERS
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Figure 4: Ranking analysis of the 9 design dimensions.
Lower is better.

Square Error (MSE) loss function,2 which is formulated as follows:

! =

Õ
(D,8)2OC

(ÂD8 � AD8 )
2

|OC |
+ _k⇥k

2, (7)

where ÂD8 and AD8 are the predicted rating and the ground truth,
respectively, OC is the set of observed ratings for training, _ is the
hyperparameter controlling the !2 regularization weight and ⇥
denotes the model parameters.

As for the evaluation metric, we use the common Rooted Mean
Square Error (RMSE) for the rating prediction task [16], which is

calculated by '"(⇢ =

rÕ
(D,8 )2O4 (ÂD8�AD8 )

2

|O4 |
, where O4 is the set of

observed ratings for testing.

4.3.2 Hyperparameters. The hyperparameters of the sampled mod-
els should be the same to ensure a fair comparison. The values of 3
hyperparameters, i.e., dropout, training epochs, and !2 regulariza-
tion weight _ are set according to the evaluation result of controlled
random search on the validation set. Their available choices are
listed in Table 3 and the evaluation result is shown in Figure 3. The
rest of the hyperparameters are set as common values in practice.
We refer the readers to Appendix B.1 for more detailed hyperpa-
rameter settings and C.1 for other implementation details.

4.4 Evaluation Results
Results are shown in Figure 4 with 9 bar plots, each depicting the
averaged rankings of di�erent choices in each design dimension
(we further show the violin plots to decipt the ranking distribu-
tion in Appendix D). The experiment quantitatively evaluates the
impacts of di�erent design dimensions of GNN-based CF on recom-
mendation performance across a wide range of recommendation
scenarios.

Rather than searching for the single best model out of all these
con�gurations, we explore whether there are �ndings that can
enrich the understanding of the design dimensions and help to
e�ciently design top-performing GNN-based CFmodels in di�erent
recommendation scenarios. Some key experimental �ndings are
enumerated as below:
• GAT and GraphSAGE slightly outperform the other alternatives.
Interestingly, None is comparable with GNN-based aggregators,

2In this work, we mainly study the rating prediction task under MSE loss and leave
the study of the in�uence of di�erent types of loss function as future work.

indicating that simply using MF [16] or MLP-based CF meth-
ods [11] can achieve competitive or even better performance in
some scenarios. The interesting �nding reveals that incorporat-
ing graph information can not always enhance CF.

• Sigmoid clearly stands out among all the 6 activations. This
�nding di�ers from that in [10], which �nds out that the non-
linear activation can not bene�t CF. A possible explanation is
that the tasks studied in the two works are di�erent: item ranking
in [10] while rating prediction in ours, where non-linear acti-
vation can help to increase the expressive power of the neural
networks for such a regression task.

• When taking multi-component into consideration, it is more
favorable to set component number as 4, which aligns with the
�nding of previous work [37] that the user interests are diverse in
di�erent aspects. And it is preferable to combine representations
of di�erent components with Att mechanism.

• Adopting neural interaction function is superior to adopting
Dot Product, which is not consistent with the �nding in [28]
that Dot Product is a better choice to MLP for predicting
the ratings for user-item pairs. We suppose it may be caused by
the di�erent settings of the two works. In [28], the evaluation is
performed on speci�c model architectures with 2 datasets, while
in our setting, we evaluate thousands of model architectures on
9 di�erent datasets, and thus, di�erent conclusions are drawn.
The above �ndings not only enrich our understanding of the

impacts of di�erent design dimensions but further provide valuable
insights for e�ectively designing top-performing models. Specif-
ically, we can observe that there exists some redundancy in the
design space. For example, the initial embedding dimension can be
�xed as 64 since it signi�cantly outperforms the other 2 alternatives.
It motivates us that the vanilla design space can be further pruned
to improve its quality, which will boost the searching e�ciency of
top-performing models.

5 EVALUATION OF PRUNED DESIGN SPACE
Following the insights provided in Section 4.4, we prune the vanilla
design space by narrowing down the choices of design dimen-
sions. The motivation is that we only remain those favorable de-
sign choices, which are empirically more likely to generate well-
performingmodels. Thus, the pruned design space contains a higher
concentration of top-performing models which will facilitate model
searching.

5.1 The Pruned Design Space
Table 4 introduces the choices in the design dimensions of the
pruned design space. We brie�y explain the pruning in 3 dimen-
sions, and for the other dimensions, preferable design choices are
remaining, which can be naturally understood from Figure 4. For
aggregation, GraphSAGE remains as the representative of graph
information aggregator for its smaller training consumption than
GAT, and None also remains to make the pruned design space have
a capacity of non-GNN-based models. As for the activation, two
preferable non-linear functions and Identity remain for better
containment of linear and non-linear models. The optimal com-
ponent number 4 remains, and we also keep the choice of 1 for
investigating single-component models.

[Wang et al.]

When 𝑑 = 256 the 
recommendation 
performance seems 
to be higher…
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[Shen et al.] ... but this might not be 
always true and could 
come at the expense of 
training time.

Table 4: The comparison of performance and training time of GF-CF and LightGCN.

Dataset Gowalla Yelp2018 Amazon-book

Method recall ndcg training time recall ndcg training time recall ndcg training time

LightGCN-64 0.1830 0.1554 2.77 × 104s 0.0649 0.0530 5.15 × 104s 0.0411 0.0315 1.27 × 105s
LightGCN-128 0.1878 0.1591 3.31 × 104s 0.0671 0.0550 5.66 × 104s 0.0459 0.0353 1.81 × 105s
LightGCN-256 0.1893 0.1606 4.54 × 104s 0.0689 0.0568 8.09 × 104s 0.0481 0.0371 2.98 × 105s
LightGCN-512 0.1892 0.1604 7.28 × 104s 0.0689 0.0569 1.33 × 105s 0.0485 0.0375 5.26 × 105s

GF-CF 0.1849 0.1518 30.5s 0.0697 0.0571 46.0s 0.0710 0.0584 65.8s

Yelp2018, which are of small sizes, LightGCN outperforms LGCN-
IDE. However, LGCN-IDE outperforms LightGCN by a large mar-
gin on the large-scale dataset, i.e., the Amazon-book dataset. In
LightGCN, the known scores are compressed into limited dimen-
sional vectors, which restricts the expressiveness. In contrast, in
LGCN-IDE, the ratings are directly used as the graph signal with-
out compression. Additionally, LightGCN is trained with a stochas-
tic gradient descent (SGD) while LGCN-IDE has a closed-form so-
lution. As the size of the dataset increases, the optimization by
SGD becomes more di!cult. We suspect that these two reasons
contribute to the large performance gain of LGCN-IDE over Light-
GCN in the Amazon-book dataset.

5.2.2 Graph filters versus deep learning-based methods. In Table 3,
the simple graph "lter achieves competitive or better performance
compared with deep learning-based methods. LightGCN also out-
performsNGCF by removing the non-linear transformations. From
the universal approximation theory [16], deep neural networks can
approximate linear functions easily. Nevertheless, linear functions
are non-trivial to learn for a neural network trained with SGD.
A recent theoretical study demonstrates that it is impossible for
neural networks with tanh, cosine, or quadratic activation to ex-
trapolate the linear functions well [46]. With ReLU activation, A
neural network can extrapolate linear functions well if the train-
ing data cover all directions (e.g., a hypercube covering the origin)
[46], which is not trivial to satisfy in practice. This theoretical re-
sult suggests that learning linear functions is a non-trivial task. In
addition, deep neural networks do well in extracting complicated
features, but CF with implicit feedback is in lack of rich features.
Owing to these two factors, the linear models are able to outper-
form deep models in CF with implicit feedback.

5.3 Comparison with LightGCN of Large
Embedding Dimension

In this subsection, we compare GF-CF with LightGCNs of di#erent
embedding dimensions. For the untrained LightGCN, the perfor-
mance improves signi"cantly with the dimension as shown in Fig.
1. The natural questions are 1) does the performance of trained
LightGCN increase signi"cantly as the dimension grows; 2) how
does GF-CF perform compared with LightGCN with large embed-
ding dimensions. We validate these questions empirically in Table
4. The experiments in this subsection are conducted on a server
with an Intel Xeon(R) CPU E5-2698 v4 @ 2.20GHz and a Tesla
V100 GPU. For the implementation of LightGCN, we download the
source code fromhttps://github.com/gusye1234/LightGCN-PyTorch

and train 1000 epochs as the original paper3. Due to the excessive
training cost, we do not train LightGCNwith an embedding dimen-
sion of more than 512. As shown in Table 4, GF-CF still achieves
competitive or higher performance than LightGCN with large em-
bedding dimensions. As the embedding dimension grows, the per-
formance improvement of LightGCN becomes marginal, which is
similar to matrix factorization and neural collaborative "ltering
[32]. The overall training time ofGF-CF is even smaller than 1 train-
ing epoch consumed by LightGCN. It demonstrates that GF-CF is
a simple but hard-to-beat baseline method for CF.

6 RELATED WORKS

6.1 Collaborative Filtering Methods

Collaborative"ltering (CF) plays a fundamental role inmodern rec-
ommender systems [7]. One popular paradigm is the model-based
CF methods. In such methods, the users and items are parameter-
ized by (low-dimensional) vectors and the interactions are recon-
structed based on the embeddings and model weights. The classic
matrix factorization (MF) maps the ID of users and items as em-
bedding vectors and uses the dot product between embedding vec-
tors as predicted scores. The dot product model can be further im-
proved by using neural networks [15, 37]. Another classic model-
based CF is to reconstruct the score for an item by a transformation
of the scores for other items, from linear auto-encoders (e.g., SLIM
[27]) to deep auto-encoders (e.g., Multi-VAE [24]). Another para-
digm is graph-based CF methods. The early works (e.g., Item-rank
[12] and Bi-rank [14]) exploit the label propagation on graph and
belong to the neighborhood-based methods. These methods are of-
ten considered as heuristics and inferior to model-based methods
due to the lack of training. Recent works address this issue by de-
veloping GCN-based methods and train GCNs in an end-to-end
manner, e.g., GC-MC [4], NGCF [41], and LightGCN [13].

Notice that the information contained in the sparse rating ma-
trix or graph formulation are identical and GFT is a matrix factor-
ization. In this paper, we unify the two paradigms from the graph
signal processing view and identify that the low-pass "lters are the
underlying key component in the two paradigms. In addition, we
show that di#erent paradigms correspond to di#erent low-pass "l-
ters and these "lters can be incorporated together to improve the
performance.

3We notice that training LightGCN for 400−600 instead of 1000 epochs only introduce
a slight performance loss, which reduces the training time of LightGCN, but this does
not a#ect our conclusion as we have more than three magnitudes of speedups.
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Models
Strategies

Normal Xavier

NGCF 3
DGCF 3
LightGCN 3
SGL 3
UltraGCN 3
GFCF

Normal and Xavier are 
almost equally-
preferrable.
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NOT ALL NEIGHBORS HAVE THE SAME IMPORTANCE

[Veličković et al.]

It might be useful to 
weight the contribution 
provided by each 
neighbour node before 
the aggregation.

Published as a conference paper at ICLR 2018
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Figure 1: Left: The attention mechanism a(W~hi,W~hj) employed by our model, parametrized
by a weight vector ~a 2 R2F 0

, applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are
concatenated or averaged to obtain ~h0
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To stabilize the learning process of self-attention, we have found extending our mechanism to em-
ploy multi-head attention to be beneficial, similarly to Vaswani et al. (2017). Specifically, K inde-
pendent attention mechanisms execute the transformation of Equation 4, and then their features are
concatenated, resulting in the following output feature representation:

~h
0
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k
k=1

�

0

@
X
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↵
k
ijW

k~hj

1

A (5)

where k represents concatenation, ↵k
ij are normalized attention coefficients computed by the k-th

attention mechanism (ak), and Wk is the corresponding input linear transformation’s weight matrix.
Note that, in this setting, the final returned output, h0, will consist of KF

0 features (rather than F
0)

for each node.

Specially, if we perform multi-head attention on the final (prediction) layer of the network, concate-
nation is no longer sensible—instead, we employ averaging, and delay applying the final nonlinear-
ity (usually a softmax or logistic sigmoid for classification problems) until then:

~h
0
i = �

0

@ 1

K

KX

k=1

X

j2Ni

↵
k
ijW

k~hj

1

A (6)

The aggregation process of a multi-head graph attentional layer is illustrated by Figure 1 (right).

2.2 COMPARISONS TO RELATED WORK

The graph attentional layer described in subsection 2.1 directly addresses several issues that were
present in prior approaches to modelling graph-structured data with neural networks:

• Computationally, it is highly efficient: the operation of the self-attentional layer can be par-
allelized across all edges, and the computation of output features can be parallelized across

4



DISENTANGLING THE NODE REPRESENTATION

[Ma et al.]

Neighbour nodes have 
specific features 
which might explain 
why they interacted 
with the ego node.



[Wang et al.]

There might exist 
hidden intentions 
underlying each 
user-item interaction.
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ABSTRACT
Learning informative representations of users and items from the
interaction data is of crucial importance to collaborative �ltering
(CF). Present embedding functions exploit user-item relationships
to enrich the representations, evolving from a single user-item
instance to the holistic interaction graph. Nevertheless, they largely
model the relationships in a uniform manner, while neglecting
the diversity of user intents on adopting the items, which could
be to pass time, for interest, or shopping for others like families.
Such uniform approach to model user interests easily results in
suboptimal representations, failing to model diverse relationships
and disentangle user intents in representations.

In this work, we pay special attention to user-item relationships
at the �ner granularity of user intents. We hence devise a new
model, Disentangled Graph Collaborative Filtering (DGCF), to
disentangle these factors and yield disentangled representations.
Speci�cally, by modeling a distribution over intents for each
user-item interaction, we iteratively re�ne the intent-aware
interaction graphs and representations. Meanwhile, we encourage
independence of di�erent intents. This leads to disentangled
representations, e�ectively distilling information pertinent to each
intent. We conduct extensive experiments on three benchmark
datasets, and DGCF achieves signi�cant improvements over several
state-of-the-art models like NGCF [40], DisenGCN [25], and
MacridVAE [26]. Further analyses o�er insights into the advantages
of DGCF on the disentanglement of user intents and interpretability
of representations. Our codes are available in https://github.com/
xiangwang1223/disentangled_graph_collaborative_�ltering.

CCS CONCEPTS
• Information systems! Recommender systems.

KEYWORDS
Collaborative Filtering, Graph Neural Networks, Disentangled
Representation Learning, Explainable Recommendation
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1 INTRODUCTION
Personalized recommendation has become increasingly prevalent
in real-world applications, to help users in discovering items of
interest. Hence, the ability to accurately capture user preference is
the core. As an e�ective solution, collaborative �ltering (CF), which
focuses on historical user-item interactions (e.g., purchases, clicks),
presumes that behaviorally similar users are likely to have similar
preference on items. Extensive studies on CF-based recommenders
have been conducted and achieved great success.

Figure 1: An illustration of diverse user-item relationships
at the granularity of latent intents.

Learning informative representations of users and items is of
crucial importance to improving CF. To this end, the potentials
of deepening user-item relationships become more apparent.
Early models like matrix factorization (MF) [28] forgo user-item
relationships in the embedding function by individually projecting
each user/item ID into a vectorized representation (aka. embedding).
Some follow-on studies [11, 16, 19, 23] introduce personal history
as the pre-existing feature of a user, and integrate embeddings
of historical items to enrich her representation. More recent
works [10, 36, 40] further organize all historical interactions as a
bipartite user-item graph to integrate the multi-hop neighbors into
the representations and achieved the state-of-the-art performance.
We attribute such remarkable improvements to the modeling of
user-item relationships, evolving from using only a single ID, to
personal history, and then holistic interaction graph.

Despite e�ectiveness, we argue that prior manner of modeling
user-item relationships is insu�cient to discover disentangled user
intents. The key reason is that existing embedding functions fail to
di�erentiate user intents on di�erent items — they either treat
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[Wang et al.]

The node embeddings 
are split into intentions, 
and they are trained to 
be uncorrelated.

DISENTANGLING IN GRAPH CF (2/2)

Figure 2: Illustration of the proposed disentangled graph collaborative �ltering framework. Best viewed in color.

where eku is thek-th latent intent in�uence for useru; for simplicity,
we make these component the same dimension, eku 2 R

d
K . It is

worth highlighting that eku should be independent of ek 0u for k 0 6=
k , so as to reduce semantic redundancy and encourage that signals
are maximally compressed about individual intents. Towards that,
each chunked representation eku is built upon the intent-aware
graph Gk and synthesizes the relevant connectivities. Analogously,
we can establish the representation ei for item i .

3 METHODOLOGY
We now present disentangled graph collaborative �ltering, termed
DGCF, which is illustrated in Figure 2. It is composed of two key
components to achieve disentanglement: 1) graph disentangling
module, which �rst slices each user/item embedding into chunks,
coupling each chunk with an intent, and then incorporates a
new neighbor routing mechanism into graph neural network,
so as to disentangle interaction graphs and re�ne intent-aware
representations; and 2) independencemodelingmodule, which hires
distance correlation as a regularizer to encourage independence of
intents. DGCF ultimately yields disentangled representations with
intent-aware explanatory graphs.

3.1 Graph Disentangling Module
Studies on GNNs [9, 18, 38] have shown that applying embedding-
propagation mechanism on graph structure can extract useful
information from multi-hop neighbors and enrich representation
of the ego node. To be more speci�c, a node aggregates information
from its neighbors and updates its representations. Clearly, the
connectivities among nodes provide an explicit channel to guide
the information �ow. We hence develop a GNN model, termed
graph disentangling layer, which incorporates a new neighbor
routing mechanism into the embedding propagation, so as to
update weights of these graphs. This allows us to di�erentiate
varying importance scores of each user-item connection to re�ne
the interaction graphs, and in turn propagate signals to the intent-
aware chunks.

3.1.1 Intent-Aware Embedding Initialization. Distinct from
mainstream CF models [12, 19, 28, 40] that parameterize user/item
ID as a holistic representation only, we additionally separate the ID
embeddings into K chunks, associating each chunk with a latent
intent. More formally, such user embedding is initialized as:

u = (u1, u2, · · · , uK ), (5)

where u 2 Rd is ID embedding to capture intrinsic characteristics
of u; uk 2 R

d
K is u’s chunked representation of the k-th intent.

Analogously, i = (i1, i2, · · · , iK ) is established for item i . Hereafter,
we separately adopt random initialization to initialize each chunk
representation, to ensure the di�erence among intents in the
beginning of training. It is worth highlighting that, we set the same
embedding size (say d = 64) with the mainstream CF baselines,
instead of doubling model parameters (cf. Section 3.4.1).

3.1.2 Intent-Aware Graph Initialization. We argue that prior
works are insu�cient to pro�le rich user intents behind behaviors,
since they only utilize one user-item interaction graph [40] or
homogeneous rating graphs [36] to exhibit user-item relationships.
Hence, we de�ne a set of score matrices {Sk |8k 2 {1, · · · ,K}}

for K latent intents. Focusing on an intent-aware matrix Sk , each
entry Sk (u, i) denotes the interaction between user u and item i .
Furthermore, for each interaction, we can construct a score vector
S(u, i) = (S1(u, i), · · · , SK (u, i)) 2 RK over K latent intents. We
uniformly initialize each score vectors as follows:

S(u, i) = (1, · · · , 1), (6)

which presumes the equal contributions of intents at the start of
modeling. Hence, such score matrix Sk can be seen as the adjacency
matrix of intent-aware graph.

3.1.3 Graph Disentangling Layer. Each intent k now includes
a set of chunked representations, {uk , ik |u 2 U, i 2 I}, which
specialize its feature space, as well as a speci�c interaction graph
represented by Sk . Within individual intent channels, we aim to
distill useful information from high-order connectivity between
users and items, going beyond ID embeddings. Towards this end,
we devise a new graph disentangling layer, which is equipped with
the neighbor routing and embedding propagation mechanisms,
with the target of di�erentiating adaptive roles of each user-item
connection when propagating information along it. We de�ne such
layer �(·) as follows:

e(1)ku = �(uk , {ik |i 2 Nu }), (7)

where e(1)ku is to collect information that are pertinent to intent
k from u’s neighbors; Nu is the �rst-hop neighbors of u (i.e., the
historical items adopted by u); and the super-index (1) denotes the
�rst-order neighbors.

IterativeUpdateRule. Thereafter, as Figure 3 shows, the neighbor
routing mechanism is adopted: �rst, we employ the embedding
propagation mechanism to update the intent-aware embeddings,
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Models Normalize When

NGCF 3
during

message-passing

DGCF 3
during

message-passing
LightGCN

SGL 3
after

message-passing
UltraGCN
GFCF

The l2 normalization seems 
to stabilize the training, and 
it is performed during or 
after the message-passing.
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FROM THE ORIGINAL CODES

Each layer combination 
comes with a final dimension 
which may increase the 
computational complexity.

Models How Final dimension

NGCF concat
PL

l=1 dl
DGCF mean d
LightGCN mean d
SGL stack + mean d
UltraGCN
GFCF



BENCHMARKS FROM THE LITERATURE

[Wang et al.]

Figure 4: Ranking analysis of the 9 design dimensions.
Lower is better.

Square Error (MSE) loss function,2 which is formulated as follows:

! =

Õ
(D,8)2OC

(ÂD8 � AD8 )
2

|OC |
+ _k⇥k

2, (7)

where ÂD8 and AD8 are the predicted rating and the ground truth,
respectively, OC is the set of observed ratings for training, _ is the
hyperparameter controlling the !2 regularization weight and ⇥
denotes the model parameters.

As for the evaluation metric, we use the common Rooted Mean
Square Error (RMSE) for the rating prediction task [16], which is

calculated by '"(⇢ =

rÕ
(D,8 )2O4 (ÂD8�AD8 )

2

|O4 |
, where O4 is the set of

observed ratings for testing.

4.3.2 Hyperparameters. The hyperparameters of the sampled mod-
els should be the same to ensure a fair comparison. The values of 3
hyperparameters, i.e., dropout, training epochs, and !2 regulariza-
tion weight _ are set according to the evaluation result of controlled
random search on the validation set. Their available choices are
listed in Table 3 and the evaluation result is shown in Figure 3. The
rest of the hyperparameters are set as common values in practice.
We refer the readers to Appendix B.1 for more detailed hyperpa-
rameter settings and C.1 for other implementation details.

4.4 Evaluation Results
Results are shown in Figure 4 with 9 bar plots, each depicting the
averaged rankings of di�erent choices in each design dimension
(we further show the violin plots to decipt the ranking distribu-
tion in Appendix D). The experiment quantitatively evaluates the
impacts of di�erent design dimensions of GNN-based CF on recom-
mendation performance across a wide range of recommendation
scenarios.

Rather than searching for the single best model out of all these
con�gurations, we explore whether there are �ndings that can
enrich the understanding of the design dimensions and help to
e�ciently design top-performing GNN-based CFmodels in di�erent
recommendation scenarios. Some key experimental �ndings are
enumerated as below:
• GAT and GraphSAGE slightly outperform the other alternatives.
Interestingly, None is comparable with GNN-based aggregators,

2In this work, we mainly study the rating prediction task under MSE loss and leave
the study of the in�uence of di�erent types of loss function as future work.

indicating that simply using MF [16] or MLP-based CF meth-
ods [11] can achieve competitive or even better performance in
some scenarios. The interesting �nding reveals that incorporat-
ing graph information can not always enhance CF.

• Sigmoid clearly stands out among all the 6 activations. This
�nding di�ers from that in [10], which �nds out that the non-
linear activation can not bene�t CF. A possible explanation is
that the tasks studied in the two works are di�erent: item ranking
in [10] while rating prediction in ours, where non-linear acti-
vation can help to increase the expressive power of the neural
networks for such a regression task.

• When taking multi-component into consideration, it is more
favorable to set component number as 4, which aligns with the
�nding of previous work [37] that the user interests are diverse in
di�erent aspects. And it is preferable to combine representations
of di�erent components with Att mechanism.

• Adopting neural interaction function is superior to adopting
Dot Product, which is not consistent with the �nding in [28]
that Dot Product is a better choice to MLP for predicting
the ratings for user-item pairs. We suppose it may be caused by
the di�erent settings of the two works. In [28], the evaluation is
performed on speci�c model architectures with 2 datasets, while
in our setting, we evaluate thousands of model architectures on
9 di�erent datasets, and thus, di�erent conclusions are drawn.
The above �ndings not only enrich our understanding of the

impacts of di�erent design dimensions but further provide valuable
insights for e�ectively designing top-performing models. Specif-
ically, we can observe that there exists some redundancy in the
design space. For example, the initial embedding dimension can be
�xed as 64 since it signi�cantly outperforms the other 2 alternatives.
It motivates us that the vanilla design space can be further pruned
to improve its quality, which will boost the searching e�ciency of
top-performing models.

5 EVALUATION OF PRUNED DESIGN SPACE
Following the insights provided in Section 4.4, we prune the vanilla
design space by narrowing down the choices of design dimen-
sions. The motivation is that we only remain those favorable de-
sign choices, which are empirically more likely to generate well-
performingmodels. Thus, the pruned design space contains a higher
concentration of top-performing models which will facilitate model
searching.

5.1 The Pruned Design Space
Table 4 introduces the choices in the design dimensions of the
pruned design space. We brie�y explain the pruning in 3 dimen-
sions, and for the other dimensions, preferable design choices are
remaining, which can be naturally understood from Figure 4. For
aggregation, GraphSAGE remains as the representative of graph
information aggregator for its smaller training consumption than
GAT, and None also remains to make the pruned design space have
a capacity of non-GNN-based models. As for the activation, two
preferable non-linear functions and Identity remain for better
containment of linear and non-linear models. The optimal com-
ponent number 4 remains, and we also keep the choice of 1 for
investigating single-component models.

Stack and concat seem 
to be the highest 
recommendation 
performance.
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RECSYS LEVERAGING MULTIMODAL DATA

Multimodal-aware 
recommender systems exploit 
multimodal (i.e., audio, visual, 
textual) data to augment the 
representation of items, thus 
tackling known issues such as 
dataset sparsity and the 
inexplicable nature of users’ 
actions (i.e., views, clicks) on 
online platforms.
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MULTIMODAL EMBEDDINGS

𝑈

𝐼

𝑢!

𝑢" 𝑢#
𝑢$

𝑖!

𝑖"
𝑖#

𝑖$

𝑖%

𝑖&

1 0 1 1 1 0

0 0 0 0 1 0

1 1 1 0 0 0

0 0 1 1 0 1

𝑢!

𝑢"

𝑢#

𝑢$

𝑖! 𝑖" 𝑖# 𝑖$ 𝑖% 𝑖&

users

items

user-item 
interaction matrix

𝒆'

𝒆(

𝒇'
(*)

𝒇(
(*)

co
ll

ab
or

at
iv

e
m

u
lt

im
od

al

extracted through pre-trained 
large models

(optional) users’ preference 
towards each modality



MULTIMODAL-AWARE RECSYS

Models Venue
Multimodal
embeddings GNN

Multimodal
graphs

Users Items U-I I-I

VBPR AAAI’16 3 3 7
MMGCN MM’19 3 3 3 3 7
GRCN MM’20 7 3 3 3 7
LATTICE MM’21 7 3 3 7 3
BM3 WWW’23 7 3 3 3 7
FREEDOM MM’23 7 3 3 7 3

The recent tendency 
is to exploit GNN + 

multimodality, on the 
user-item and/or the 

item-item graphs.



LIGHTGCN AND MULTIMODALITY: HOW TO?

These are not pure 
collaborative, but 
extracted from 

multimodal content 
and trainable
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Figure 2: An illustration of LightGCN model architecture.
In LGC, only the normalized sum of neighbor embeddings
is performed towards next layer; other operations like
self-connection, feature transformation, and nonlinear
activation are all removed, which largely simpli�es GCNs.
In Layer Combination, we sum over the embeddings at each
layer to obtain the �nal representations.

3.1.1 Light Graph Convolution (LGC). In LightGCN, we adopt the
simple weighted sum aggregator and abandon the use of feature
transformation and nonlinear activation. The graph convolution
operation (a.k.a., propagation rule [39]) in LightGCN is de�ned as:

e(k+1)u =
X
i 2Nu

1p
|Nu |

p
|Ni |

e(k )i ,

e(k+1)i =
X
u 2Ni

1p
|Ni |

p
|Nu |

e(k )u .
(3)

The symmetric normalization term 1p
|Nu |

p
|Ni |

follows the design

of standard GCN [23], which can avoid the scale of embeddings
increasing with graph convolution operations; other choices can
also be applied here, such as the L1 norm, while empirically we
�nd this symmetric normalization has good performance (see
experiment results in Section 4.4.2).

It is worth noting that in LGC, we aggregate only the connected
neighbors and do not integrate the target node itself (i.e., self-
connection). This is di�erent from most existing graph convolution
operations [14, 23, 36, 39, 48] that typically aggregate extended
neighbors and need to handle the self-connection specially.
The layer combination operation, to be introduced in the next
subsection, essentially captures the same e�ect as self-connections.
Thus, there is no need in LGC to include self-connections.

3.1.2 Layer Combination and Model Prediction. In LightGCN, the
only trainable model parameters are the embeddings at the 0-th
layer, i.e., e(0)u for all users and e(0)i for all items. When they are
given, the embeddings at higher layers can be computed via LGC
de�ned in Equation (3). AfterK layers LGC, we further combine the
embeddings obtained at each layer to form the �nal representation

of a user (an item):

eu =
KX
k=0

�ke
(k )
u ; ei =

KX
k=0

�ke
(k )
i , (4)

where �k � 0 denotes the importance of the k-th layer embedding
in constituting the �nal embedding. It can be treated as a hyper-
parameter to be tuned manually, or as a model parameter (e.g.,
output of an attention network [3]) to be optimized automatically.
In our experiments, we �nd that setting �k uniformly as 1/(K + 1)
leads to good performance in general. Thus we do not design
special component to optimize �k , to avoid complicating LightGCN
unnecessarily and to keep its simplicity. The reasons that we
perform layer combination to get �nal representations are three-
fold. (1)With the increasing of the number of layers, the embeddings
will be over-smoothed [27]. Thus simply using the last layer is
problematic. (2) The embeddings at di�erent layers capture di�erent
semantics. E.g., the �rst layer enforces smoothness on users and
items that have interactions, the second layer smooths users (items)
that have overlap on interacted items (users), and higher-layers
capture higher-order proximity [39]. Thus combining them will
make the representation more comprehensive. (3) Combining
embeddings at di�erent layers with weighted sum captures the
e�ect of graph convolution with self-connections, an important
trick in GCNs (proof sees Section 3.2.1).

The model prediction is de�ned as the inner product of user and
item �nal representations:

�̂ui = eTu ei , (5)

which is used as the ranking score for recommendation generation.

3.1.3 Matrix Form. We provide the matrix form of LightGCN to
facilitate implementation and discussion with existing models. Let
the user-item interaction matrix be R 2 RM⇥N where M and N
denote the number of users and items, respectively, and each entry
Rui is 1 if u has interacted with item i otherwise 0. We then obtain
the adjacency matrix of the user-item graph as

A =
✓
0 R
RT 0

◆
, (6)

Let the 0-th layer embedding matrix be E(0) 2 R(M+N )⇥T , where T
is the embedding size. Then we can obtain the matrix equivalent
form of LGC as:

E(k+1) = (D� 1
2AD� 1

2 )E(k ), (7)

whereD is a (M +N )⇥ (M +N ) diagonal matrix, in which each entry
Dii denotes the number of nonzero entries in the i-th row vector
of the adjacency matrix A (also named as degree matrix). Lastly,
we get the �nal embedding matrix used for model prediction as:

E = �0E(0) + �1E(1) + �2E(2) + ... + �KE(K )

= �0E(0) + �1ÃE(0) + �2Ã
2E(0) + ... + �K Ã

KE(0),
(8)

where Ã = D� 1
2AD� 1

2 is the symmetrically normalized matrix.

3.2 Model Analysis
We conduct model analysis to demonstrate the rationality behind
the simple design of LightGCN. First we discuss the connection
with the Simpli�ed GCN (SGCN) [40], which is a recent linear

[Wei et al.]
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