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Recommender systems (RSs) provide customers with a personalized navigation experience within the vast catalogs of products and
services offered on popular online platforms. Despite the substantial success of traditional RSs, recommendation remains a highly
challenging task, especially in specific scenarios and domains. For example, human affinity for items described through multimedia
content (e.g., images, audio, and text), such as fashion products, movies, and music, is multi-faceted and primarily driven by their
diverse characteristics. Therefore, by leveraging all available signals in such scenarios, multimodality enables us to tap into richer
information sources and construct more refined user/item profiles for recommendations. Despite the growing number of multimodal
techniques proposed for multimedia recommendation, the existing literature lacks a shared and universal schema for modeling and
solving the recommendation problem through the lens of multimodality. Given the recent advances in multimodal deep learning for
other tasks and scenarios where precise theoretical and applicative procedures exist, we also consider it imperative to formalize a
general multimodal schema for multimedia recommendation. In this work, we first provide a comprehensive literature review of
multimodal approaches for multimedia recommendation from the last eight years. Second, we outline the theoretical foundations of
a multimodal pipeline for multimedia recommendation by identifying and formally organizing recurring solutions/patterns. Third,
we demonstrate its rationale by conceptually applying it to selected state-of-the-art approaches in multimedia recommendation.
Subsequently, we conduct a benchmarking analysis of recent algorithms for multimedia recommendation within Elliot, a rigorous
framework for evaluating recommender systems, where we re-implement such multimedia recommendation approaches. Finally, we
highlight the significant unresolved challenges in multimodal deep learning for multimedia recommendation and suggest possible
avenues for addressing them. The primary aim of this work is to provide guidelines for designing and implementing the next generation
of multimodal approaches in multimedia recommendation.
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1 INTRODUCTION

Over the last few decades, companies have increasingly been developing online platforms to reach their customers and
offer them a more comprehensive selection of personalized products and services in various domains, from food and
fashion to e-commerce and tourism. Recommender systems (RSs) are among the prominent technologies that work
behind the scenes of such platforms to unveil the implicit preference patterns within the intricate set of users and items
and curate the presentation of a list of products that customers may enjoy. Such technologies are an essential element
of all major Internet businesses, driving up to 35% of Amazon’s sales [69] and more than 80% of Netflix’s catalog [23].

There exist recommendation scenarios, such as multimedia recommendation, where items naturally come with
additional side information that may complement the knowledge conveyed by the historical user/item interaction
matrix. Multimedia recommendation [28, 29] is the task of recommending products or services either described through
multimedia content (e.g., a fashion item with a product image and description) or multimedia content themselves (e.g.,
a movie with its visuals, soundtrack, and subtitles). In such a context, any recorded user/item interaction may hide
multiple possible reasons why that interaction occurred. A user could be interested in buying a fashion item due to the
description on the item page and could enjoy a movie because of its soundtrack. Understanding these patterns means
modeling users’ and items’ profiles through the multi-faceted aspects of their interactions.

Our experience of daily life is intrinsically multimodal. We interact with objects surrounding us through our five
senses. For instance, watching a movie can involve three senses (i.e., modalities): we watch it (visual modality) while
listening to the dialogues (audio modality) and possibly reading its subtitles (textual modality). Multimodal learning
has been one of the hot topics in deep learning for some years now, addressing applicative domains such as medical
imaging [9, 34, 40, 95], autonomous driving [11, 46, 111, 132], speech/emotion recognition [54, 65, 80, 81], multimedia
retrieval [13, 42, 43, 55], and, only recently, multimodal large language modelling [117]. Given the success and popularity
it has encountered, some works have tried to outline, categorize, and formalize the core concepts behind multimodality
in deep learning [6, 7, 77]. Remarkably, the literature recognizes five steps and challenges when designing a multimodal
deep learning pipeline [6]: representation, translation, alignment, fusion, and co-learning.

Similarly to the cited domains and applications, approaches in multimedia recommendation have been shown to
effectively apply multimodal deep learning techniques to the recommendation task. The idea is to model users’ and
items’ profiles through the different modalities and suitably capture the multi-faceted nature of their interconnections.
Recent works in the literature have brought multimodality to multimedia recommendation [62, 84, 98, 133] tackling
(just to mention a few) micro-video recommendation [12, 20, 109], food recommendation [53, 75, 104], outfit fashion
compatibility [18, 114, 122], and artist/song recommendation [22, 79, 101]. However, and differently from the other
outlined domains and scenarios, recommendation lacks a shared theoretical and applicative formalization to align the
multimedia recommendation problem with the same formal pipeline proposed in multimodal deep learning [6, 7, 77].

For these reasons, in this work, we first review the most popular and recent state-of-the-art approaches in multimedia
recommendation. Indeed, it emerges that three main design choices are involved when proposing novel multimedia
recommender systems leveraging multimodality: (i)Which modalities to suitably describe the user/item input data;
(ii) How to extract and process meaningful multimodal representations; (iii)When to integrate and inject multimodal
data into the training/inference steps. While observing that many multimedia recommendation approaches are rarely
aligned on the techniques to adopt for (i), (ii), and (iii), we maintain this could limit the future development of novel
solutions in the field. This is true since each work claims to advance with respect to the state-of-the-art but it becomes
cumbersome to distinguish which conceptual and implementation strategies are contributing the most [70].
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Thus, inspired by the multimodal pipeline formalized in multimodal deep learning [6, 7, 77], we try to align the
same schema with the three design choices recognized above. Our objective is to define a conceptual and theoretical
schema that uses multimodality to encompass and summarize the most diffused solutions/patterns in the multimedia
recommendation literature. To the best of our knowledge, this represents the first attempt that, differently from similar
works in the literature [62, 133], formalizes multimedia recommendation through the core concepts theorized in
multimodal deep learning [6, 7, 77].

To sum up, we aim to answer the following research questions (RQs):

RQ1. Which are the main solutions in the related literature? We review existing works in multimedia recommendation
adopting multimodal learning techniques, highlighting common and different architectural choices; in this
respect, we categorize the reviewed papers according to the type of multimodal input (i.e., What), the technique
for features processing (i.e., How), and the moment to integrate modalities (i.e.,When).

RQ2. How can we summarize the observed strategies into a shared formal schema? On such basis, and following the
related literature on multimodal deep learning, we revisit the multimedia recommendation task under the lens of
multimodal deep learning; bymapping the multimodal pipeline outlined in [6, 7, 77] to the threefold categorization
from RQ1, we provide the general formulations for a formal schema involving three steps: multimodal input
data, multimodal feature processing, and multimodal feature fusion.

RQ3. How is our formal schema conceptually applicable to existing recommendation models? First, we select four
multimodal approaches from the recent literature spanning various domains and scenarios in multimedia
recommendation; then, we show how the proposed multimodal schema conceptually applies to the selected
models in all the steps of the pipeline, thus proving its effectiveness.

RQ4. Can we integrate the multimodal schema into existing recommendation frameworks? We use Elliot [2], a rigorous
framework for the reproducibility of recommender systems, and integrate our multimodal schema into it
to benchmark six state-of-the-art multimodal techniques for multimedia recommendation (i.e., VBPR [39],
MMGCN [109], GRCN [108], LATTICE [124], BM3 [135], and FREEDOM [134]); the measured recommendation
metrics, accounting also for beyond-accuracy evaluation, open to future research directions.

RQ5. Which are the next challenges in multimodal learning for recommendation? Driven by the previous findings, we
outline technical and conceptual challenges aimed to provide guidelines for future research in the field.

The rest of this paper is organized as follows. Section 2 provides a comprehensive overview of the most recent works
exploiting multimodality for multimedia recommendation, and highlights the main differences between this work and
similar works in the literature. Then, in Section 3, we present our formal schema which tries to embody and generalize
the different solutions reviewed in the literature. After that, in Section 4, we show how to apply the schema to a valuable
sample of state-of-the-art approaches. Under the same light, in Section 5, we present the implementation of our formal
schema, which we adopt to benchmark selected models from the literature. Furthermore, in Section 6, we take advantage
of the lesson learned from the literature and the benchmarking study to outline existing technical challenges that may
be addressed in future directions (i.e., Section 7). Finally, in Section 8, we sum up the main contributions of this paper. To
foster the reproducibility of the current work, we release a GitHub repository with all the reviewed papers, along with
the benchmarking framework and results at the following link: https://github.com/sisinflab/Formal-MultiMod-Rec.
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2 LITERATURE REVIEW (RQ1)

In this section, we present a literature review on recent multimodal applications for the task of multimedia recommen-
dation. Table 1 reports 43 papers collected from the proceedings of top-tier conferences and journals over the last eight
years. A careful review and analysis aimed at outlining recurrent schematic and observed patterns suggests categorizing
the retrieved papers according to three key questions:

• Which modalities to choose for the input data?
• How to process multimodal features in terms of feature extraction and representation?
• When to fuse the different modalities to integrate them into the final recommendation framework?

To collect all reviewed papers, we also include a public GitHub repository1 to access their direct DOIs. We intend to
update this repository with the most recent works leveraging multimodality for multimedia recommendation.

2.1 Whichmodalities?

In multimedia recommendation scenarios, input data generally comes in at least two of the three most common
modalities in literature, namely Visual, Textual, and Audio modalities. As evident from the collected papers, the vast
majority of works consider the visual and textual modalities, which mainly refer to product images and descriptions
(e.g., [25, 30, 36, 59, 122, 124]), respectively, while fewer examples leverage such modalities to describe video frames
and captions (e.g., [45, 85, 104]) or users’ social media interactions through uploaded photographs together with texts
(e.g., [17, 113, 126]). Another emerging trend from the literature is that audio is by far the most underrepresented
modality, and it is usually coupled with the textual one to describe music in the form of audio signals and songs’
descriptions (e.g., [79, 101]). Conversely, the related literature shows that the audio modality is frequently exploited for
video input data (e.g., [96, 103, 108, 109, 116]) which is also the unique scenario involving all modalities.

The observed disparity in data modalities is not only linked to the specific task the various approaches address (e.g.,
product, song, or micro-video recommendation) but it is also found in each modality’s different availability. In this
respect, for example, datasets collecting user-item interactions on e-commerce platforms (e.g., the Amazon reviews
dataset or IQON300) are more easily accessible than the ones involving social media videos. For instance, one may
consider that a version of the TikTok dataset (introduced in [109]) has been made available with pre-trained multimodal
features involving visual, audio, and textual modalities only recently [106]. This modality misalignment is among the
most discussed challenges in the community, so we decide to dedicate a section to it later (refer to Section 6.1).

2.2 How to process modalities?

Once modalities have been selected for data inputs, two primary operations usually get involved in processing the
multimodal data to be fed into the recommender system. First, high-level features are extracted from each of the
available modalities. Interestingly, early approaches adopt handcrafted feature extraction (HFE) strategies (e.g., color
histograms) as described in [17, 45, 56, 78]. However, with the outbreak and the increasing popularity encountered
by deep learning and deep neural models for image and text classification, object detection, and speech recognition,
trainable feature extractors (TFE) soon became the de facto standard in the learning of latent features from the input data.
In this respect, the literature [26] indicates that the common approach is to use the activation of one of the final hidden
layers of deep neural networks. For instance, the authors of [63, 64, 75, 89, 102, 106, 120] exploit features extracted
from deep networks. Furthermore, we categorize TFE strategies based on the use of Pretrained deep networks and
1https://github.com/sisinflab/Formal-MultiMod-Rec.
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Table 1. Overview of the core questions which arise when modelling a multimedia recommender system based upon multimodality, as
observed in the most updated literature. HFE: Handcrafted Feature Extraction, TFE: Trainable Feature Extraction, MMR: Multimodal
Representation.

Papers Year Modalities (Which?) Feature Processing (How?) Fusion (When?)

Visual Textual Audio HFE TFE MMR
Early Late

Pretrained End-to-End Joint Coordinate

Ferracani et al. [31]
2015

✓ ✓ ✓ ✓

Jia et al. [45] ✓ ✓ ✓ ✓

Li et al. [56] ✓ ✓ ✓ ✓

Nie et al. [78] 2016 ✓ ✓ ✓ ✓ ✓

Chen et al. [17] ✓ ✓ ✓ ✓

Han et al. [36]
2017

✓ ✓ ✓ ✓ ✓

Oramas et al. [79] ✓ ✓ ✓ ✓ ✓

Zhang et al. [126] ✓ ✓ ✓ ✓ ✓

Ying et al. [118] 2018 ✓ ✓ ✓ ✓

Wang et al. [102] ✓ ✓ ✓ ✓

Liu et al. [59]

2019

✓ ✓ ✓ ✓

Chen et al. [19] ✓ ✓ ✓

Wei et al. [109] ✓ ✓ ✓ ✓ ✓ ✓

Cheng et al. [21] ✓ ✓ ✓

Dong et al. [30] ✓ ✓ ✓ ✓ ✓

Chen et al. [18] ✓ ✓ ✓ ✓

Yu et al. [120]

2020

✓ ✓ ✓ ✓ ✓ ✓ ✓

Cui et al. [25] ✓ ✓ ✓ ✓ ✓

Wei et al. [108] ✓ ✓ ✓ ✓ ✓ ✓

Sun et al. [89] ✓ ✓ ✓ ✓

Chen and Li [15] ✓ ✓ ✓ ✓

Min et al. [75] ✓ ✓ ✓ ✓ ✓

Shen et al. [87] ✓ ✓ ✓ ✓ ✓ ✓

Yang et al. [114] ✓ ✓ ✓ ✓ ✓

Tao et al. [96] ✓ ✓ ✓ ✓ ✓ ✓

Yang et al. [113] ✓ ✓ ✓ ✓ ✓

Sang et al. [85]

2021

✓ ✓ ✓ ✓ ✓

Liu et al. [63] ✓ ✓ ✓ ✓ ✓ ✓

Zhang et al. [124] ✓ ✓ ✓ ✓ ✓

Vaswani et al. [101] ✓ ✓ ✓ ✓ ✓

Lei et al. [53] ✓ ✓ ✓ ✓ ✓

Wang et al. [104] ✓ ✓ ✓ ✓

Zhan et al. [122]

2022

✓ ✓ ✓ ✓

Wu et al. [110] ✓ ✓ ✓ ✓ ✓

Yi and Chen [115] ✓ ✓ ✓ ✓ ✓

Yi et al. [116] ✓ ✓ ✓ ✓ ✓ ✓

Liu et al. [64] ✓ ✓ ✓ ✓ ✓

Mu et al. [76] ✓ ✓ ✓ ✓ ✓

Chen et al. [14] ✓ ✓ ✓ ✓ ✓ ✓

Zhou and Shen [134] ✓ ✓ ✓ ✓ ✓

Wang et al. [103]
2023

✓ ✓ ✓ ✓ ✓ ✓

Wei et al. [106] ✓ ✓ ✓ ✓ ✓ ✓

Zhou et al. [135] ✓ ✓ ✓ ✓ ✓

End-to-End learned models. The former refer to the possibility of transferring the learned knowledge of already-trained
deep networks to different domains, tasks, and datasets (e.g., see [94]), whereas the latter usually leverage custom deep
neural networks trained in the downstream recommendation task. As evident from the collected papers, the pre-trained
solution (e.g., [15, 19, 30, 31, 85, 87, 108, 118]) widely surpasses the end-to-end one (e.g., [36, 79, 126]) in terms of
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popularity, as the adoption of ready-to-use embedded features obtained from state-of-the-art deep learning models
represents a more efficient and convenient approach than performing computationally-expensive and data-eager trained
feature extractions. Nevertheless, an argument might be made that using features extracted through models already
trained on different datasets and tasks could limit their expressiveness regarding the actual multimedia recommendation
task. For this reason, we deepen into the issue in Section 6.2, trying to propose viable solutions in Section 7.1.

The second operation involved in the feature processing phase regards the implementation of a multimodal repre-
sentation (MMR) solution to establish relations among the extracted modalities. We recognize two main approaches,
namely, either combining all modalities so that they belong to a unique representation (Joint) or keeping them separated
to leverage the different influence they may have on recommendation (Coordinate). From the collected papers, it follows
that both the former (e.g., [14, 18, 31, 76, 89, 118, 122]), and the latter (e.g., [78, 109, 114, 115, 124]) are almost equally pre-
ferred; however, the coordinate multimodal representation is slightly more popular as learning different representations
for each involved modality may help unveil the specific contribution it brings to the final personalized recommendation.
Indeed, this could support explainability, which is among the hottest topics in the community [127, 128], and especially
in multimedia recommendation scenarios, where user-item interactions may, by nature, be driven by non-evident and
sometimes contrasting users’ preferences and tastes [16, 19, 108]. Finally, the authors from [19, 21] do not integrate any
multimodal representation approach since they exploit multimodality only for the optimization of the loss but not to
predict user-item preferences.

2.3 When to fuse modalities?

The last stage in the multimodal pipeline deals with the fusion of the different processed modalities so that they can be
eventually integrated into the recommendation outcome as a single representation of multiple coordinated modalities.
This process may take place before or after the prediction of the user-item preference score. On this basis, the former
and the latter approaches are usually known as Early (e.g., [101, 109]) and Late (e.g., [25, 115]) fusion, respectively. It is
worth pointing out that some solutions recognize a third strategy (i.e., Hybrid fusion) that combines the two versions
mentioned above, but for the sake of simplicity, we decide to categorize the works performing this kind of multimodal
fusion as a particular case of late fusion. Additionally, we recognize that several approaches from the literature do
not provide a precise differentiation between joint multimodal representation and early fusion. To better clarify this
technical aspect, we propose to consider fusion as an optional operation that takes place after the feature processing
phase only in the case of coordinate multimodal representation (you may refer to Section 6.3). Indeed, as evident from
the table, Joint multimodal representation and Early/Late fusion never occur in the same approach. What is more, we
observe that early fusion, employed, for instance, in [14, 30, 64, 76, 78, 85, 87, 110, 124, 126], is more popular than late
fusion, used in [25, 106, 114–116, 134, 135]. Motivating this tendency is an unanswered research question that we leave
as a possible open issue to impact the design of recommender systems leveraging multimodality. In this respect, you
may refer to Section 6.4 for our discussion on the current challenges about modality fusion, and to Section 7.3 where
we sketch possible future research directions.

2.4 Similar works to this paper

For the sake of completeness, we review the current literature works that provide similar contributions to ours to
outline the main differences. As already mentioned, pioneer works such as [6, 7, 77] introduce and formalize (for the
first time) the core concepts and ideas behind the field of multimodal deep learning. After that, the recent years have
seen a growing interest in systematically reviewing and schematizing techniques for multimodal fusion [32], spanning
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different application domains such as medicine [97], conversational artificial intelligence [92], and visual content
syntesis [129], up to addressing complex and novel machine learning strategies including meta-learning [68]. Although
the cited works share similar rationales to ours, their focus is more general (e.g., deep learning) or heterogeneous (e.g.,
medicine) with respect to the multimedia recommendation task.

In the recommendation domain, the study presented in [75] is among the closest and most influential works to our
proposal in the intention of introducing a unified framework for food recommendation which leverages the concept of
multimodality; however, the work is different from ours in that: (i) it only addresses the task of food recommendation,
and (ii) it does not provide either mathematical formalizations or benchmarking analyses of the proposed multimodal
pipeline. Furthermore, it is worth recalling two surveys regarding the topic of multimodal recommender systems [62, 133]
on arXiv at the moment of this submission. Among the two, the work presented in [133] shows the major similarities
to our paper, especially when recognizing a multimodal pipeline for multimedia recommendation and providing an
extensive benchmarking study on numerous multimodal approaches in the literature. Nevertheless, our work stands out
for the following novel contributions: (i) we systematically follow the multimodal pipeline outlined in [6, 7, 77] in the
attempt to adapt it to the three main questions arising in the multimedia recommendation literature, namely, Which?,
How?, andWhen?; (ii) we provide mathematical formalizations for each step of the proposed multimodal pipeline to
sketch a formal schema for the next generation of multimodal approaches addressing multimedia recommendation; (iii)
we identify a wider set of challenges regarding each step in the multimodal pipeline, and try to provide solutions to
tackle them all; (iv) given the recent urge to evaluate the performance of recommender systems under other objectives
apart from accuracy [1, 5, 10, 44, 86, 99, 100], and specifically when investigating the impact of multimodality on novelty
and diversity [70] or popularity bias [71], our benchmarking analysis (exploiting the evaluation pipeline from Elliot [2])
represents the first effort to rigorously assess such large-scale performance measures in multimedia recommendation,
opening to further research questions.

3 A FORMAL MULTIMODAL SCHEMA FOR MULTIMEDIA RECOMMENDATION (RQ2)

As previously outlined, the literature shows recurrent schematic patterns in adopting multimodal techniques for the
task of multimedia recommendation. However, when considering the latest solutions in the field (Section 2) it appears
evident that, differently from what happens for other applicative domains in machine learning, such approaches do
not seem to follow any shared and officially recognized formal schema aligned with the principles of multimodal
deep learning [6, 7, 77]. To sort things out, in this section, we propose to formally revisit multimedia recommendation
under the lens of multimodal deep learning (Figure 1). First, we formalize the standard recommendation task. Then, we
theoretically give answers to the core questions previously outlined, namely:Which multimodal input data to adopt,
How to extract multimodal features and set relationships among them, andWhen to fuse modalities. Finally, we specify
the multimedia recommendation task through multimodality. In the following, we use the bold notation only when we
explicitly define a vector for which we indicate its elements (i.e., scalars or other vectors).

3.1 Classical recommendation task

We consider users, items, and user-item interactions as the inputs to the recommender system. We denote with 𝑢 ∈ U,
𝑖 ∈ I, and 𝑟 ∈ R a user, an item, and a user-item interaction, respectively. To ease the notation, we say 𝑥 ∈ X is a
general input to the system, with X = U ∪ I ∪ R. Given a set of input data X, and defined 𝜌 (·) as the preference score
prediction function, a recommender system aims to build a top@𝑘 list of items maximizing the following posterior
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𝝁(⋅)
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. . .
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𝝆(⋅)
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𝜸𝒆(⋅)
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FUSION
𝜸𝒍(⋅)(1) (2)

(a)

(b)

MULTIMODAL
FUSION

(3)

(a)

(b)

(4)

𝒓

Which? How? When?

INPUT

Fig. 1. Our multimodal schema for multimedia recommendation. After (1) a modality-aware feature extraction, the extracted features
may be either directly represented into a unique latent space (2a) or projected into a different latent space for each modality (2b).
While in the former case, the multimodal representation is used to produce a prediction (4), in the latter case, all modalities must
undergo a fusion phase (3). In the early fusion (3a), we produce a final representation that is used for prediction (4). Otherwise, we
first produce a different prediction for each modality (4), and then we fuse them (late fusion) into a single predicted value (3b).

probability (𝑝𝑟𝑜𝑏):
Θ̂𝜌 = argmax

𝚯𝜌

𝑝𝑟𝑜𝑏 (𝚯𝜌 | X), (1)

where 𝚯𝜌 = [\ (0)𝜌 , \
(1)
𝜌 , . . . , \

( |W𝜌 |−1)
𝜌 ] is the vector collecting all weights for the inference function 𝜌 (·), W𝜌 =

{\ (0)𝜌 , \
(1)
𝜌 , . . . , \

( |W𝜌 |−1)
𝜌 } is the set of such weights, and |W𝜌 | its cardinality. For instance, in the case of latent factor

models (e.g., matrix factorization [50]), the set of trainable weights W𝜌 involves the user and item embedding matrices.

3.2 Multimodal input data

As shown in Figure 1, the first step of our multimodal schema is to identify input modalities. A common list of modalities
for each input data (i.e., user, item, user-item interaction) in multimedia scenarios may be defined as follows:

• visual (v), e.g., images, video frames;
• textual (t), e.g., image captions, video subtitles, song lyrics, reviews;
• audio (a), e.g., songs, podcasts, movie soundtracks.

Formally, we define𝑚 ∈ M as an admissible modality for the system (i.e., M = {v, t, a}). We should mention that data
may come with all such modalities or just a subset. For instance, videos from video streaming platforms (such as Netflix
or Amazon Prime Video) have frames (v), subtitles and/or descriptions (t), and an audio track and/or soundtrack (a).
Similarly, e-commerce platforms (such as Amazon or Zalando) sell products that may come with photographs (v) and
reviews which stand for the textual feedback users express towards those products (t).

Let 𝑥 ∈ X be an input to the recommender system, whose set of available modalities is indicated asM𝑥 ⊆ M. We
represent the content data of input 𝑥 in modality𝑚 as 𝑐 (𝑚)

𝑥 , with𝑚 ∈ M𝑥 , and the vector of content data for input 𝑥 in
all modalities as c𝑥 . Concerning the examples from above, a video item 𝑥 may be described through three modalities
(i.e.,M𝑥 = {v, a, t}) and, for example, its visual content data (a frame) is an RGB image indicated as 𝑐 (v)𝑥 . Similarly, a
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fashion item 𝑥 may be described through two modalities (i.e.,M𝑥 = {v, t}) and, for example, its textual content data
(the description) is a set of words indicated as 𝑐 (t)𝑥 .

3.3 Multimodal feature processing

As in Figure 1, multimodal inputs are processed to be transferred into a low-dimensional representation. This step runs
through a multimodal feature extractor and a component that constructs a multimodal feature representation.

3.3.1 Feature extraction. Content input data is generally not exploitable as it is in a recommender model (e.g., the
matrix of pixels from an image is not meant to be directly integrated into a recommender). Hence, our schema introduces
a Feature Extractor (FE) component to extract features, which should follow two principles, being (i) high-level (i.e.,
meaningful for the recommender system) and (ii) functional to the final recommendation task. Indeed, choosing the
most suitable feature extractor for each modality may affect the performance.

Let 𝑐 (𝑚)
𝑥 be the content data for input 𝑥 in modality𝑚 ∈ M𝑥 . Then, let 𝜑𝑚 (·) be the feature extractor function for

the modality𝑚. We define the feature extraction process in the modality𝑚 as:

𝑐
(𝑚)
𝑥 = 𝜑𝑚 (𝑐 (𝑚)

𝑥 ) ∀𝑚 ∈ M𝑥 , (2)

where 𝑐 (𝑚)
𝑥 is the extracted feature for input 𝑥 in modality𝑚. We use the notation c𝑥 = [𝑐 (0)𝑥 , 𝑐

(1)
𝑥 , . . . , 𝑐

( |M𝑥 |−1)
𝑥 ] to

refer to the vector of extracted features for input 𝑥 in all modalities. Generally speaking, 𝜑𝑚 (·) may refer either to a
handcrafted extractor, HFE (e.g., SIFT and color histogram for visual, and MFCCs for audio), or to a trainable extractor,
TFE (e.g., deep learning-based models such as CNNs for visual, audio, and textual). In the latter case, 𝜑𝑚 (·) can be either
pre-trained or trained end-to-end along with the recommender system.

3.3.2 Multimodal representation. Once high-level features have been extracted from each modality of the input data,
the next step is to design a Representation strategy to handle the relationships among modalities and eventually inject
such data into the recommender system. As shown in Section 2, the literature follows two main approaches: Joint and
Coordinate (Figure 2). The former relies on projecting multimodal features into a shared latent space to produce a unique
final representation (e.g., concatenation is usually the simplest approach). Conversely, the latter involves adopting a
different latent space for each modality, with the possibility of setting specific constraints among modalities that are
expressed, for instance, through similarity metrics. In the following, we mathematically formalize the two strategies.
Joint representation. Let c𝑥 be the vector of extracted features for input 𝑥 in all modalities. In the case of Joint
representation, we assume ` (·) is the function to produce the multimodal representation of the extracted features. Thus:

𝑐𝑥 = ` (c𝑥 ), (3)

where 𝑐𝑥 is the multimodal representation for input 𝑥 .
Coordinate representation. Let 𝑐 (𝑚)

𝑥 be the extracted feature for input 𝑥 in modality𝑚 ∈ M𝑥 . In the case of Coordinate
representation, we assume `𝑚 (·) is the multimodal representation function for modality𝑚, and let K𝑥 be a set of
constraints on multimodal representations of input 𝑥 . Thus, we say:

𝑐
(𝑚)
𝑥 = `𝑚 (𝑐 (𝑚)

𝑥 ) subject to K𝑥 , with |K𝑥 | ≥ 0, (4)

where 𝑐 (𝑚)
𝑥 is the coordinate multimodal representation for input 𝑥 in modality𝑚. Note that in Equation (4) we denote

with c̃𝑥 = [𝑐 (0)𝑥 , 𝑐
(1)
𝑥 , . . . , 𝑐

( |M𝑥 |−1)
𝑥 ] the vector of coordinate multimodal representations for input 𝑥 in all modalities.
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Fig. 2. A visual representation of Joint and Coordinate multimodal representation (above and below, respectively).

3.4 Multimodal feature fusion

As an optional third step, when Coordinate representation is used, our multimodal schema allows an additional Fusion
step to combine all produced multimodal representations. In the following, we describe the inference step in the two
cases of Early and Late fusion.
Early fusion. Let c̃𝑥 be the vector of coordinate multimodal representations for input 𝑥 in all modalities. Then, let
𝛾𝑒 (·) be the function for Early fusion. We generate the multimodal representation for input 𝑥 as:

𝑐𝑥 = 𝛾𝑒 (c̃𝑥 ). (5)

Note that after applying Equation (5), everything we describe in the following also applies to Joint representation. We
obtain the predicted output 𝑦 for input 𝑥 as:

𝑦 = 𝜌 (𝑐𝑥 ) (6)

Late fusion. Let 𝑐 (𝑚)
𝑥 be the coordinate multimodal representation for input 𝑥 in modality𝑚 ∈ M𝑥 . We first predict

the different output values for each modality as:

𝑦 (𝑚) = 𝜌 (𝑐 (𝑚)
𝑥 ) ∀𝑚 ∈ M𝑥 . (7)

Let ŷ be the vector of multimodal predicted outputs in all modalities. If we denote 𝛾𝑙 (·) as the function for Late fusion,
we finally aggregate (fuse) all modality-aware predictions:

𝑦 = 𝛾𝑙 (ŷ) . (8)

Whatever the type of Fusion, the literature shows that various works perform this operation differently, from more
straightforward solutions such as concatenation and element-wise addition, multiplication, or average to more refined
techniques (i.e., neural-based ones, like attention mechanisms). Note that, in this work, we consider Late fusion also
when multimodal representations are exploited for some specific components of the loss function; indeed, in such
settings, multimodal fusion does not occur even until the very last stage of the recommendation pipeline (i.e., the
calculation and optimization of the loss function).
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3.5 Multimodal recommendation task

Let W𝜑 , W` , and W𝛾 be the sets of the additional model trainable weights from (i) feature extraction, (ii) multimodal
representation, and (iii) multimodal fusion, respectively. Note that they could be empty, as the correspondent functions
may be non-trainable. Then, given the set of multimodal input data X, we extend Equation (1):

Θ̂ = argmax
𝚯

𝑝𝑟𝑜𝑏 (𝚯|X), (9)

where 𝚯 = [𝚯𝜌 ,𝚯𝜑 ,𝚯` ,𝚯𝛾 ], with

𝚯𝜑 = [\ (0)𝜑 , \
(1)
𝜑 , . . . , \

( |W𝜑 |−1)
𝜑 ], 𝚯` = [\ (0)` , \

(1)
` , . . . , \

( |W` |−1)
` ], 𝚯𝛾 = [\ (0)𝛾 , \

(1)
𝛾 , . . . , \

( |W𝛾 |−1)
𝛾 ], (10)

as the vectors of the model’s feature extractor weights, multimodal representation weights, and multimodal fusion
weights, respectively. We solve Equation (9) by optimizing the loss 𝐿:

𝐿 = 𝐿𝑟𝑒𝑐 (𝚯, 𝑦,𝑦) + 𝛼𝐿𝑟𝑒𝑔 (𝚯) (11)

where 𝑦 is the ground-truth value corresponding to the predicted output 𝑦, and 𝛼 is a model hyper-parameter to weight
the regularization component of the loss function (i.e., 𝐿𝑟𝑒𝑔). Algorithm 1 provides a general overview of the overall
multimodal schema we presented.

4 CONCEPTUAL APPLICATION AND VALIDATION OF THE MULTIMODAL SCHEMA (RQ3)

After having described the formalism behind our proposed multimodal schema for multimedia recommendation,
we devote the current section to the validation of the schema by conceptually applying it to four state-of-the-art
approaches from the literature (Table 2). To demonstrate how our formal solution is designed to generally work with
multiple recommendation scenarios involving multimedia user-item data interactions, we choose the proposed examples
spanning a wide range of tasks, namely micro-video recommendation [109], food recommendation [104], outfit fashion
compatibility [36], and artist/song recommendation [79].

4.1 Case 1: Micro-video recommendation

Wei et al. [109] build a bipartite user-item graph for micro-video personalized recommendation. The idea behind the
approach is to exploit high-order users-items relations leveraging the multimodal nature of recommended items (i.e.,
micro-videos), to which users may experience different attitudes. The authors adopt a graph convolutional network [49]
to refine user and item embeddings (conditioned on the graph topology).

4.1.1 Multimodal input data. Micro-videos (the items) are described via three modalities, namely: visual (i.e., frames),
textual (i.e., user-generated captions and descriptions) and audio (i.e., the audio track, that is not always available). It
is worth pointing out that also users are described through three embeddings representing how each item modality
might influence them differently. Nevertheless, they cannot be formally considered as multimodal input data (we do not
report any information about the multimodal input data and feature extraction columns in the table).

4.1.2 Feature extraction. Visual features are extracted through a pretrained ResNet50 [37] only from key video frames.
Textual features are derived from Sentence2Vector [4]. Audio features are extracted using a pre-trained VGGish [41].

4.1.3 Multimodal representation. The framework leverages three versions of the same bipartite user-item graph (i.e.,
one for each micro-video modality). The graph convolutional layer first aggregates the neighborhood features of the

11



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Malitesta et al.

Algorithm 1:Multimodal schema for multimedia recommendation
Input: Set of available modalitiesM; set of multimodal input data X and admissible modalitiesM𝑥 , ∀𝑥 ∈ X.
Output: Trained model’s weights Θ̂.
Initialize all model’s trainable weights 𝚯.
repeat

extract features according to Equation (2)
if Joint representation then

get joint representation according to Equation (3)
get model’s prediction according to Equation (6)

else if Coordinate representation then
get coordinate multimodal representations according to Equation (4)
if Early fusion then

get multimodal representation according to Equation (5)
get model’s prediction according to Equation (6)

else if Late fusion then
get predictions for each modality according to Equation (7)
get model’s prediction according to Equation (8)

for \̂ ∈ Θ̂ do
update \̂ according to Equation (9), by optimizing the loss function 𝐿 in Equation (11)

end
until convergence;
Return Θ̂.

ego node and then combines the result of such aggregation with the collaborative embedding and the multimodal
representation from the previous iteration. Given the formalism introduced above, we might say this approach goes
under the definition of Coordinate representation. The model adopts a linear projection for each modality to map the
input into a modality-specific latent space, both in the aggregation and combination steps. No explicit constraints are
introduced.

4.1.4 Multimodal fusion. The adoption of a multimodal coordinate representation requires a modality fusion phase.
This is performed through element-wise addition among modalities for users and items. As this occurs before feeding
them into the inference function, we categorize it as Early fusion.

4.1.5 Inference and loss function. As in several collaborative filtering approaches, the inference is performed through
the inner product between the multimodal representations of users and items. Regarding the loss function, the authors
use the broadly-adopted BPR [83] optimization framework, maximizing the distance between predicted ratings for
positive items (i.e., the ones interacted by users) and negative items (i.e., the ones not already interacted by users).

4.2 Case 2: Food recommendation

Wang et al. [104] introduce a tripartite framework for food recommendation whose pipeline involves the retrieval of
recipes according to user-generated videos, the profiling of users based upon their social media interactions, and the
final health-aware food recommendation of recipes.

4.2.1 Multimodal input data. On the user side, it should be noticed that the input data does not properly follow the
above definition we provide about multimodality, as users are profiled only according to the textual description of their
generated tweets. However, we maintain the importance of this example since it represents one of the few approaches in
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Table 2. Four literature examples of multimodal frameworks for multimedia recommendation. For each work, we report the performed
task, the considered modalities for each input to the system (e.g., user and item), the feature extraction and multimodal representation
strategies, the multimodal fusion, and the adopted inference/loss functions.

Paper Input Modalities Multimodal
Input Data

Feature
Extraction

Multimodal
Representation Multimodal Fusion Inference and Loss

M
ic
ro
-v
id
eo

re
co

m
m
en

da
ti
on

Wei et al. [109]

User
Visual Coordinate, aggregation of

node’s neighborhood and
combination with the ego
node. Projection in both ag-
gregation and combination.

Early, modalities are combined
through addition.

Inference via inner-product be-
tween final user and item em-
beddings. BPR is the optimiza-
tion function.

Textual

Audio

Item
Visual Video frames ResNet50

Textual Captions and de-
scriptions

Sentence2Vector

Audio Audio track VGGish

Fo
od

re
co

m
m
en

da
ti
on

Wang et al. [104]
User Textual Users’ tweets Bi-RNN & CNN Score prediction with MLP for

user tags. Loss is cross-entropy.
User embedding is later adopted
for recommendation.

Item Visual Video Frames VGGNet-19 Coordinate, no particular
operation performed.

Early, modalities are combined
via concatenation.

User-item score prediction with
MLP and cross-entropy.Textual Recipe ingredients TextCNN

O
ut
fi
tf
as
hi
on

co
m
pa

ti
bi
li
ty Han et al. [36] Item Visual Product images InceptionV3 Joint, features are projected

into a shared embedding
space.

The visual modality is used for
the inference.

Textual Descriptions One-hot-encode The textual modality is used for
the contrastive component of
the loss function.

A
rt
is
ta

nd
so
ng

re
co

m
m
en

da
ti
on Oramas et al. [79] Item Textual Artist biography Custom CNN Coordinate, textual and au-

dio features normalized and
optionally fed into two sep-
arate MLPs.

Early, either normalized fea-
tures are concatenated and fed
into a one-layer MLP, or multi-
modal representations are con-
nected to the one-layer MLP.

Inference via inner-product be-
tween user and final item em-
beddings. Cosine distance is the
loss function.

Audio Audio
spectrogram Custom CNN

the literature that proposes to model users through a multimodality-like solution. On the other side, items’ description
is multimodal because it integrates frames of user-generated videos to retrieve recipes from (i.e., visual modality) and
descriptions of recipe ingredients (i.e., textual modality).

4.2.2 Feature extraction. Users’ tweets are the input to what the authors define as a word-class interaction-based
recurrent convolutional network (WIRCNN), which involves a recurrent neural network (RNN) and a convolutional
neural network (CNN) to classify user tags. As for items, sampled video frames are encoded through a pre-trained
VGGNet-19 [88], while textual recipe ingredients are processed via TextCNN [48].

4.2.3 Multimodal representation. Given that the user profile is not multimodal per se, we do not recognize any
multimodal representation stage. On the item side, the multimodal representation is Coordinate, but no particular
operation is performed on the extracted multimodal features.

4.2.4 Multimodal fusion. Nomodality fusion is run over user profiles. Regarding items, authors adopt an Early modality
fusion by concatenating the visual and textual features.

4.2.5 Inference and loss function. User embeddings are learned for tag prediction, with a one-layer MLP used to predict
scores and cross-entropy as a loss function. The final user embeddings are eventually exploited for the main task of
food recommendation. Contrarily, item embeddings are directly adopted for the score prediction, run with a one-layer
MLP trained on a binary cross-entropy loss.
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4.3 Case 3: Outfit fashion compatibility

Han et al. [36] propose a framework to recommend the next fashion item that matches a set of already chosen ones to
produce a visually appealing outfit. The authors address the task by considering the items composing a fashionable
outfit as a temporal sequence, so they leverage a bidirectional LSTM [35].

4.3.1 Multimodal input data. Recommendation is multimodal because the authors adopt both product images (i.e.,
visual modality) and text descriptions of the fashion items extracted from the product details (i.e., textual modality).

4.3.2 Feature extraction. The visual features of fashion items are extracted from aGoogleNet InceptionV3 [93] pretrained
network (the TFE), whose dimensionality is 2048. As for the textual description, each word is a one-hot-encoded vector.

4.3.3 Multimodal representation. Visual and textual extracted features are projected into a unique latent space, whose
dimensionality is 512. According to the earlier formalism, this approach follows a Joint multimodal representation.
On the one hand, 2048-dimensional visual features are compressed into a 512-dimensional embedding through a fully
connected neural network layer, which is trained end-to-end with the recommendation model. On the other hand, the
textual features for each description are first projected into the 512-dimensional latent space through linear mapping
(i.e., adopting a projection matrix, which is also trained end-to-end). Then, the authors adopt bag-of-words to obtain a
unique representation for the description of each fashion item.

4.3.4 Inference and loss function. Only the visual modality is adopted as input for the recommendation inference.
However, the textual modality is exploited jointly with the visual input to minimize the contrastive component of the
loss function, for whom the cosine similarity measures the distance between visual and textual modalities in the shared
latent space.

4.4 Case 4: Artist and song recommendation

The approach introduced by Oramas et al. [79] deals with the task of music recommendation. Specifically, the authors
propose to divide the problem into artist and song recommendations by learning their separate embeddings and
leveraging the textual artist biography and audio spectrogram as inputs.

4.4.1 Multimodal input data. Multimodality is to be found in the item’s description, which is based upon artist biography
(i.e., textual modality) and audio spectrogram derived from songs (i.e., audio modality).

4.4.2 Feature extraction. Artist biographies are processed through the state-of-the-art CNN, which is re-trained using
word2vec word embeddings pre-trained on the Google News dataset [74]. As for the song latent factors, a custom CNN
with 256, 512, and 1024 convolutional filters is trained on the time axis, having as output the 4096-dense layer.

4.4.3 Multimodal representation. Before further processing the extracted multimodal features, both textual and audio
features are normalized. Afterward, they optionally go through two separate MLPs (i.e., Coordinate representation).

4.4.4 Multimodal fusion. The authors explore two possibilities: if no MLP processing occurred in the multimodal
representation stage, then normalized features are concatenated and fed into a one-layer MLP; otherwise, multimodal
representations are connected to the one-layer MLP. They adopt an Early multimodal fusion in both cases.

4.4.5 Inference and loss function. Inference is run through the inner product between user and item final embeddings,
while cosine distance is the chosen loss function as the learned latent embeddings are l2-normalized.
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5 IMPLEMENTATION AND BENCHMARKING (RQ4)

In this section, we show how we integrate the proposed multimodal schema for multimedia recommendation into
Elliot [2], a framework for the rigorous reproducibility and evaluation of recommender systems. Specifically, we
use this implementation to benchmark six state-of-the-art multimedia recommendation approaches (i.e., VBPR [39],
MMGCN [109], GRCN [108], LATTICE [124], BM3 [135], and FREEDOM [134]). As Elliot provides evaluation metrics
accounting for recommendation accuracy and beyond-accuracy measures, we maintain the importance of assessing
the performance of such models especially on the latter category of metrics. Indeed, the related literature about
multimedia recommendation has mainly focused on the performance evaluation through standard accuracy metrics,
often disregarding the potentially huge relevance that other evaluation dimensions could have by measuring the novelty
and diversity of the produced recommendations [70], or the portion of popular items recommended to users [71].

In the following, we report on the datasets we used, the technical aspects of the multimedia recommender systems
involved, the evaluation metrics we adopted (spanning both accuracy and beyond-accuracy recommendation metrics),
the reproducibility details of our framework, and the results of the benchmarking analysis.

5.1 Datasets

For the benchmarking, we use five popular [19, 47, 124, 135] datasets which collect the purchase history from five
product categories of the Amazon catalog [38, 73], namely, Office Products (i.e., Office), Toys & Games (i.e., Toys), All
Beauty (i.e., Beauty), Sports & Outdoors (i.e., Sports), and Clothing Shoes & Jewelry (i.e., Clothing). Besides containing
the records of user-product interactions with timestamps and other metadata, such datasets come with the visual
features extracted from the product images, stored as 4,096-dimensional embeddings which are publicly available at the
same URL of the datasets2. Conversely, in terms of textual modality, we adopt the same procedure indicated in [124],
and concatenate the item’s title, descriptions, categories, and brand, to extract the 1,024-dimensional textual embeddings
through sentence transformers [82]. Overall dataset information can be found in Table 3.

5.2 Multimedia recommender systems

We decide to benchmark the results of six state-of-the-art multimedia recommender systems, namely, VBPR [39],
MMGCN [109], GRCN [108], LATTICE [124], BM3 [135], and FREEDOM [134]. Such approaches represent a group
of techniques that are widely recognized in the related literature as strong baselines in multimedia recommendation
exploiting multimodality, as well as recently proposed solutions at top-tier conferences (Table 4). In the following, we
describe the main technical details for each of them.

5.2.1 VBPR. Visual-bayesian personalized ranking [39], abbreviated as VBPR, represents one of the pioneering efforts
to integrate visual-aware content such as high-level visual features derived from product images, into the BPR-MF
recommendation algorithm. In addition to the collaborative embeddings for users and items, the authors introduce a
pair of visual embeddings for users and items. The latter captures high-level features extracted from product images
using a pre-trained convolutional neural network. The prediction score is determined by summing the inner products of
the collaborative and visual embeddings. While VBPR was initially conceived as a recommendation system focused on
a single modality, we have followed the approach outlined in [124] to introduce additional user and item embeddings
for each additional modality, mirroring the methodology applied to the visual modality.

2https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html.
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Table 3. Statistics of the tested datasets.

Datasets |U| |I| |R| Sparsity (%)

Office 4,905 2,420 53,258 99.55%
Toys 19,412 11,924 167,597 99.93%
Beauty 22,363 12,101 198,502 99.93%
Sports 35,598 18,357 296,337 99.95%
Clothing 39,387 23,033 278,677 99.97%

5.2.2 MMGCN. Multimodal graph convolution network [109], referred to as MMGCN, introduces the concept of
multimodality in graph-based recommendation systems. In this approach, the authors suggest training distinct graph
convolutional networks for each modality under consideration. This results in three sets of user and item representations,
accommodating the various perspectives that users may have toward each modality. Ultimately, all the embeddings
related to different modalities, both for users and items, are merged through element-wise addition, and the preference
prediction score is computed using an inner product.

5.2.3 GRCN. Graph-refined convolutional network [108], denoted as GRCN leverages the information from various
modalities to refine the values of the adjacency matrix. This is particularly important due to the implicit nature of
user-item interactions in the bipartite graph. The primary objective is to identify and potentially remove edges that do
not accurately reflect each user’s actual preferences. The multimodal representations of users and items that are learned
are then fused through concatenation to produce a comprehensive representation for predicting preference scores.

5.2.4 LATTICE. Latent structure mining method for multimodal recommendation [124], dubbed LATTICE, creates a
similarity graph between items for each modality and enhances this structure using graph structure learning techniques.
These improved adjacency matrices are then merged through a weighted sum, assigning varying importance weights to
each modality. The resulting adjacency matrix is employed to refine item embeddings using a graph convolutional
network. Ultimately, the obtained item embeddings can serve as the building blocks for various user and item latent
factor-based models, such as BPR-MF.

5.2.5 BM3. Bootstrapped multimodal model [135], indicated as BM3, proposes a self-supervised multimodal technique
for recommendation. Different from previous approaches using computationally expensive augmentations, BM3
leverages dropout as a simple operation for generating contrastive views of the same embeddings. In detail, the loss
function consists of three components, where a reconstruction loss minimizes the similarity between the contrastive
views of user and item embeddings, while an inter- and intra-modality alignment loss works to minimize the distance
between the contrastive views generated for the same or different modalities.

5.2.6 FREEDOM. The authors from [134] demonstrate that freezing the item-item multimodal similarity graph (derived
from LATTICE) and denoising the user-item graph can lead to improved recommendation performance (the proposed
model is named FREEDOM). As for the denoising operation of the user-item graph, the authors propose a degree-
sensitive edge pruning to remove noisy edges from the user-item adjacency matrix. Moreover, and differently from
LATTICE, the model optimizes a double BPR-like loss function, where the first component of the loss integrates a
multimodal-enhanced representation of the item embedding, while the second component explicitly leverages the item
projected multimodal features.
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Table 4. An overview on the selected multimedia recommender systems, along with their publication venue and year, and a non-
exhaustive set of papers where they are used as baselines.

Models Year Venue Baseline in

VBPR [39] 2016 AAAI [19, 21, 59, 61, 96, 124]
MMGCN [109] 2019 MM [89, 103, 106, 107, 122, 135]
GRCN [108] 2020 MM [52, 60, 61, 106, 124, 135]
LATTICE [124] 2021 MM [47, 76, 106, 125, 135]
BM3 [135] 2023 WWW [58, 119, 133]
FREEDOM [134] 2023 MM [133]

5.3 Evaluation metrics

To conduct the benchmarking analysis, we measure the recommendation performance through accuracy and beyond-
accuracy metrics. While the former are commonly adopted measures in the related literature on multimedia recommen-
dation, the latter have been brought to the attention of the community only in recent works, especially to assess the
novelty and diversity of the recommended items [70], or how multimedia recommender systems are biased towards
suggesting popular items [71]. For the recommendation accuracy, we consider the Recall@k and the nDCG@k; for the
novelty [100] and diversity [90], we measure the EFD@k and the Gini@k, respectively; for the popularity bias [1], we
calculate the APTL@k; finally, as a general index of how recommendations cover the entire catalog of products, we
adopt the iCov@k. In the following, we present each of these metrics along with their mathematical formulations.

5.3.1 Recall. The recall (Recall) evaluates to what extent the recommender systems can retrieve relevant items from
the recommendation list:

Recall@𝑘 =
1
|U|

∑︁
𝑢∈U

|Rel𝑢 @𝑘 |
|Rel𝑢 |

, (12)

with Rel𝑢 as the set of relevant items for user 𝑢, and Rel𝑢 @𝑘 as the set of relevant recommended items in the top@𝑘 .

5.3.2 Normalized discount cumulative gain. The normalized discount cumulative gain (nDCG) measures both the
relevance and the ranking position of items from the recommendation lists, considering the various relevance degrees:

nDCG@𝑘 =
1
|U|

∑︁
𝑢

DCG𝑢@𝑘

IDCG𝑢@𝑘
, (13)

where DCG@𝑘 =
∑𝑘
𝑖=1

2𝑟𝑒𝑙𝑢,𝑖 −1
log2 (𝑖+1)

is the cumulative gain of relevance scores in the recommendation list, and 𝑟𝑒𝑙𝑢,𝑖 ∈ Rel𝑢 ,
and IDCG is the cumulative gain of relevance scores for an ideal recommender system.

5.3.3 Expected free discovery. The expected free discovery (EFD), as introduced in [100], is a metric accounting for
novelty in recommendation that utilizes the inverse collection frequency. Specifically, it provides a quantification on how
a recommender system can suggest relevant long-tail items (i.e., niche products):

EFD@𝑘 = 𝐶
∑︁
𝑖𝑘 ∈𝑅

disc(𝑘)𝑃 (Rel𝑢 @𝑘 | 𝑖𝑘 , 𝑢) ·
(
− log2 𝑝 (𝑖 | seen, \ )

)
. (14)

5.3.4 Gini index. The Gini index (Gini) indicates the disparity in items’ popularity when considering the recommen-
dation lists for each user. In detail, it provides a measurement of how certain items are consistently favored by a
large portion of users with respect to other items. For the sake of this analysis, we use a normalized version of Gini

17



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Malitesta et al.

according to which high values stand for a wide set of items being suggested to users, and low values indicate that a few
popular items are generally recommended, leading to a less diverse recommendation experience [90]. Its (normalized)
formulation is:

Gini@𝑘 = 1 −
(∑ | I |

𝑖=1 (2𝑖 − |I| − 1)𝑃 |@𝑘 (𝑖)

|I|∑ | I |
𝑖=1 𝑃 |@𝑘 (𝑖)

)
, (15)

where 𝑃 |@𝑘 (𝑖) represents the popularity of item 𝑖 , in the top@𝑘 recommendation lists, sorted in non-decreasing order
(i.e., 𝑃 |@𝑘 (𝑖) ≤ 𝑃 |@𝑘 (𝑖 + 1)).

5.3.5 Average percentage of long-tail items. The average percentage of long-tail items (APLT) assesses the presence of
popularity bias in recommendation [1]. When referring to popularity bias, we indicate the tendency of recommender
systems to boost the recommendation of popular/mainstream items (i.e., short-head) at the detriment of unpopular/niche
products (i.e., long-tail), thus limiting the exposure of certain item categories to users. The APLT calculates the percentage
of long-tail items belonging to the recommendation lists (averaged over all users):

APLT@𝑘 =
1
|U|

∑︁
𝑢∈U

|{𝑖 | 𝑖 ∈ (Î𝑢@𝑘 ∩ ∼ Φ)}|
𝑘

, (16)

where Î𝑢@𝑘 is the list of top@𝑘 recommended items for user 𝑢, and Φ is the set of items belonging to the short-tail
distribution while ∼ Φ stands for the remaining long-tail items.

5.3.6 Item coverage. The item coverage (iCov) is a percentage estimating how the recommended items span the entire
catalog of products in the recommendation system:

iCov@𝑘 =
|⋃𝑢 Î𝑢@𝑘 |
|I𝑡𝑟𝑎𝑖𝑛 |

%, (17)

where I𝑡𝑟𝑎𝑖𝑛 is the set of items in the training set.

5.4 Reproducibility

First, we pre-process the datasets following the 5-core filtering on users and items to remove cold-start users and items
as done in [124]. Second, we split them according to the 80:20 hold-out strategy for the training and test sets, where the
former and the latter contain the 80% and the 20% of interactions recorded for each user, respectively. Then, we decide
to train the recommendation models so that the number of epochs (i.e., 200) and the batch size (i.e., 1024) are the same
for all of them to ensure fair comparison. As for the other models’ hyper-parameters, we follow a grid search strategy
with 10 explorations comprising both the learning rate and the regularization coefficients and fix the remaining (model-
specific) hyper-parameters to the best values according to the original papers and/or codes. Finally, to select the best
configuration for each model and dataset, we remove the 50% of the test set for the validation set (following again [124]),
and select the hyper-parameter setting providing the highest Recall@20 value on the validation data measured for a
specific epoch (maximum 200 epochs). To foster the reproducibility of the proposed benchmarks, we provide the codes,
datasets, and configuration files to replicate our results at: https://github.com/sisinflab/Formal-MultiMod-Rec, where
we integrated the selected multimedia recommender systems into Elliot [2].
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5.5 Benchmarking results

Table 5 reports on the results of the extensive benchmarking analysis we conduct on the selected datasets and state-of-
the-art multimedia recommendation systems. The calculated metrics involve both accuracy (i.e., Recall and nDCG) and
beyond-accuracy (i.e., EFD, Gini, APLT, and iCov) measures when considering top@10 and top@20 recommendation
lists. Based on how we defined all the recommendation metrics, higher values indicate better performance.

In terms of accuracy performance, we observe that one of LATTICE, BM3, and FREEDOM is steadily among the
two best recommendation models, which is something that also emerges from the related literature. This holds across
all datasets and top@k under analysis. Nevertheless, we notice an interesting trend when considering VBPR. Indeed,
we observe how this model is quite always among the top-3 recommendation techniques despite being one of the
shallowest approaches compared to other more recent and complex models. As already stated in recent works [70, 71],
this finding demonstrates how even a not-so-deep, but still careful hyper-parameter exploration (such as the one we
performed) may help uncover unexpected results with respect to what described in the literature.

However, the most surprising behavior involves the analysis of the beyond-accuracy performance. While several
works depict the most recent approaches in multimedia recommendation (i.e., LATTICE, BM3, and FREEDOM) as
dominating the accuracy level, the same does not hold for other metrics accounting for novelty, diversity, and popularity
bias. Indeed, the only observable trend in this setting is that GRCN and VBPR steadily settle as best-performing
algorithms. Particularly, it is worth pointing out how both approaches can strike a sufficient trade-off between accuracy
and beyond-accuracy measures, where VBPR can even reach quite high performance on beyond-accuracy without
giving up on accuracy that much. Once again, such observations corroborate what has recently been pointed out in
similar works [70, 71], by extending the analysis to additional datasets and multimedia recommendation systems.

To conclude, the proposed benchmarking study indicates that training and evaluating multimedia recommender
systems remain an open challenge in the literature, paving the way to more rigorous and careful analyses to be conducted
in future work (see Section 7.4).

6 TECHNICAL CHALLENGES (RQ5)

This section aims to overview the main technical challenges we recognize in multimodal approaches for multimedia
recommendation. Starting from the proposed schema we presented in the previous sections, we outline the evident (or
even less evident) issues emerging from the literature.

6.1 Missing modalities in the input data

Describing data under the lens of multimodality may be a two-sided coin. From one perspective, multimodality helps
enrich the informative content carried by the input, thus exploring data’s multi-faceted nature to learn better-tailored
user-item preference patterns [72]. On the other side, the need to provide descriptive content for every input modality
may come at the expense of some missing modalities (e.g., a video dataset could integrate videos having no textual
content, for example, subtitles or descriptions may be only sometimes available). Tackling the modality misalignment in
the data is a recent and widely discussed challenge in other domains [51, 66, 121, 123], and requires ad-hoc techniques to
provide equal representation of all involved modalities to fully exploit their informative richness [67, 91]. Nevertheless,
to the best of our knowledge, the issue remains open in recommendation.
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Table 5. Benchmarking results on selected datasets and state-of-the-art multimedia recommender systems. The reported values refer
to accuracy and beyond-accuracy recommendation metrics, on top@10 and top@20 recommendation lists. For each metric-dataset
pair, boldface and underline indicate best and second-to-best values.

Datasets Models
top@10 top@20

Accuracy Beyond-accuracy Accuracy Beyond-accuracy

Recall nDCG EFD Gini APLT iCov Recall nDCG EFD Gini APLT iCov

Office

VBPR 0.0652 0.0419 0.1753 0.3634 0.2321 93.83% 0.1025 0.0533 0.1479 0.3960 0.2375 97.51%
MMGCN 0.0455 0.0300 0.1140 0.0128 0.0016 3.07% 0.0798 0.0405 0.1027 0.0231 0.0078 4.64%
GRCN 0.0393 0.0253 0.1215 0.4587 0.3438 99.01% 0.0667 0.0339 0.1051 0.4892 0.3469 99.79%
LATTICE 0.0664 0.0449 0.1827 0.2128 0.1752 87.86% 0.1029 0.0566 0.1513 0.2652 0.2039 95.90%
BM3 0.0701 0.0460 0.1837 0.1407 0.1427 77.13% 0.1081 0.0583 0.1550 0.1900 0.1715 91.55%
FREEDOM 0.0560 0.0365 0.1493 0.1922 0.1875 79.12% 0.0884 0.0469 0.1282 0.2439 0.2080 90.64%

Toys

VBPR 0.0710 0.0458 0.1948 0.2645 0.1064 84.90% 0.1006 0.0545 0.1527 0.3011 0.1180 92.82%
MMGCN 0.0256 0.0150 0.0648 0.0989 0.0961 37.87% 0.0426 0.0200 0.0570 0.1450 0.1058 52.51%
GRCN 0.0554 0.0354 0.1604 0.3954 0.2368 92.66% 0.0831 0.0436 0.1298 0.4329 0.2482 97.73%
LATTICE 0.0805 0.0512 0.2090 0.1656 0.0546 73.80% 0.1165 0.0617 0.1665 0.2026 0.0684 86.58%
BM3 0.0613 0.0393 0.1582 0.0776 0.0486 56.23% 0.0901 0.0478 0.1270 0.1154 0.0658 73.50%
FREEDOM 0.0870 0.0548 0.2284 0.1474 0.0756 62.09% 0.1249 0.0660 0.1820 0.2007 0.0951 78.42%

Beauty

VBPR 0.0760 0.0483 0.2119 0.2076 0.0833 83.06% 0.1102 0.0586 0.1700 0.2376 0.0915 91.41%
MMGCN 0.0496 0.0294 0.1300 0.0252 0.0282 13.75% 0.0772 0.0379 0.1105 0.0423 0.0345 21.37%
GRCN 0.0575 0.0370 0.1817 0.3823 0.2497 94.59% 0.0892 0.0466 0.1498 0.4178 0.2608 98.56%
LATTICE 0.0867 0.0544 0.2272 0.1153 0.0386 65.82% 0.1259 0.0661 0.1830 0.1558 0.0511 81.60%
BM3 0.0713 0.0443 0.1831 0.0245 0.0179 32.31% 0.1051 0.0545 0.1490 0.0414 0.0228 48.75%
FREEDOM 0.0864 0.0539 0.2279 0.0921 0.0486 55.89% 0.1286 0.0666 0.1868 0.1359 0.0653 72.96%

Sports

VBPR 0.0450 0.0281 0.1167 0.1501 0.0497 75.77% 0.0677 0.0349 0.0949 0.1722 0.0552 86.54%
MMGCN 0.0342 0.0207 0.0791 0.0095 0.0046 5.10% 0.0551 0.0269 0.0678 0.0168 0.0065 8.39%
GRCN 0.0330 0.0202 0.0885 0.3087 0.2190 91.28% 0.0523 0.0259 0.0746 0.3386 0.2273 97.09%
LATTICE 0.0610 0.0372 0.1465 0.0573 0.0129 48.44% 0.0898 0.0456 0.1185 0.0802 0.0185 64.90%
BM3 0.0548 0.0349 0.1372 0.0776 0.0283 59.13% 0.0825 0.0430 0.1118 0.1120 0.0385 76.75%
FREEDOM 0.0603 0.0375 0.1494 0.0621 0.0319 48.37% 0.0911 0.0465 0.1219 0.0926 0.0442 65.81%

Clothing

VBPR 0.0339 0.0181 0.0502 0.2437 0.0809 83.40% 0.0529 0.0229 0.0413 0.2791 0.0915 92.33%
MMGCN 0.0227 0.0119 0.0292 0.0136 0.0044 7.58% 0.0348 0.0150 0.0240 0.0236 0.0066 12.44%
GRCN 0.0319 0.0164 0.0481 0.3990 0.2358 93.37% 0.0496 0.0209 0.0397 0.4368 0.2459 97.77%
LATTICE 0.0502 0.0275 0.0738 0.1022 0.0134 58.49% 0.0744 0.0336 0.0589 0.1384 0.0207 76.20%
BM3 0.0418 0.0226 0.0596 0.1348 0.0319 72.88% 0.0633 0.0281 0.0486 0.1825 0.0449 88.65%
FREEDOM 0.0547 0.0294 0.0805 0.1509 0.0600 65.54% 0.0822 0.0363 0.0652 0.2078 0.0843 81.91%

6.2 Pre-trained feature extractors

Deep learning models processing images, texts, or audio have been shown to enrich the informative content of items’
profiles in several recommendation algorithms. In most solutions, such architectures are used as pre-trained blocks
to extract high-level features from the input data, thus exploiting the capability of deep neural networks to transfer
knowledge among different datasets and/or tasks. Despite the ease of adopting ready-to-use feature extraction networks,
we seek to underline a conceptual limitation that, to the best of our knowledge, is only partially investigated in
the literature. Indeed, pre-trained representations extracted through state-of-the-art deep learning models are not
necessarily supposed to capture those semantic features, which will likely captivate users for their final decision-making
process. As an example, the embedding feature extracted from a product image (e.g., a bag) through a pre-trained
deep convolutional network (e.g., ResNet50) is carrying high-level informative content driven by the task of image

classification, but this does not mean the same knowledge will be helpful to predict whether the product could be
recommended to a user.
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6.3 Modalities representation

The multimodal representation of the extracted input data is among the main stages in the multimodal schema we
described since it establishes the relationships for the selected input modalities. Nonetheless, the literature is not
generally aligned on its definition since most of the works usually refer to Joint representation and Early fusion
interchangeably. We recognize this as a conceptual issue because the two stages (i.e., representation and fusion) should
be considered separately. We maintain that the former stands for the initial step to set interconnections among early-
extracted multimodal features, while the latter, despite dealing again with modalities relationships, involves features
that have been further processed towards the task optimization (i.e., recommendation in our case), thus embodying
different rationales and techniques. Furthermore, the related literature suggests two possible solutions to multimodal
representation, either Joint or Coordinate, where the latter additionally requires the subsequent fusion step. However,
each of the paradigms’ advantages and whether they might depend on the task remain under investigation.

6.4 Multimodal-aware fusion and optimization

While multimodal representation builds on input modalities in the early stages of the schema, multimodal fusion
accounts for multimodal features that have already been processed, with a specific focus on the last steps (i.e., inference
and model optimization). Similarly to what was observed above, multimodal fusion may come in the form of Early
or Late fusion. The significant difference between the two approaches lies in preserving or not modalities separation
during the inference (i.e., Late and Early, respectively). The literature demonstrates the vast predominance of Early
solutions, whereas several works quite often refer to Late fusion by mistaking it for Early fusion. Indeed, providing a
precise definition for the two is of paramount importance because the two approaches may serve different purposes. The
rationale of Late fusion is to keep the modalities separation explicit during the inference phase so that the contribution
of each modality is observable up to the last operation. Moreover, the literature is not aligned on the operation to fuse
modalities. Non-trainable fusion functions (e.g., element-wise addition) are usually the preferred direction given that it
is more lightweight and easy to perform to trainable approaches (e.g., neural networks) which (on their side) may allow
to better tailor user-item preference prediction.

7 FUTURE DIRECTIONS (RQ5 — EXTENSION)

The scope of this section is to outline possible future directions for the application of multimodality for multimedia
recommendation. While some of the presented solutions may apply to the above-raised challenges, we also discuss
different research paths we suggest to follow in future work.

7.1 Domain-specific multimodal features

Given the limitations imposed by the adoption of pre-trained multimodal features (see again Section 6.2), we wish to
underline the benefits of domain-specific features in the multimodal schema we have outlined. Extracting such high-level
features from input data would entail injecting meaningful and task-aware informative content into the recommendation
system, thereby better-profiling items and users on the platform to generate more tailored recommendations. Domain-
specific features should necessitate domain-specific extraction models, which may have been previously trained and
optimized on similar tasks to the one we are pursuing. Regarding fashion recommendation, for instance, we recall the
work by Ge et al. [33], a pre-trained architecture for the comprehensive visual analysis of clothing photos. Another
example is the food recommendation system proposed by Yang et al. [112], which analyzes food-related photos.
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Fig. 3. An example of how users generate and upload multimodal feedback about interacted items (e.g., textual reviews, product
photos, or even video reviews) on online platforms. Such user-item sources of information may be suitably exploited to better profile
user’ preferences.

Furthermore, in the field of audio and text understanding and classification, Choi et al. [24] construct a deep model
based on convolutional recurrent neural networks for music tagging by taking into account songs’ local features and
temporal characteristics, whereas Barbieri et al. [8] tackle the task of sentiment analysis in user-generated tweets.

7.2 Multimodality on user-item interactions

Multimodality is the most intuitive approach to describe the multifaceted nature of items in multimedia recommenda-
tion [28, 29], but this does not hold for the users’ profile.

First, from a technical point of view, profiling each user through multimodal features (e.g., her voice, her visual
appearance) would require sophisticated technologies that users’ digital devices could not necessarily support (e.g.,
smartphones). Second, from a practical point of view, it is likely that users would not be disposed to share such personal
data on online platforms, primarily for privacy concerns. Despite the raised critical aspects, a few examples from
the literature [96, 109] propose to model the user profile in such a way that her preferences toward each multimodal
aspect of items are made explicit and learned during model’s training. However, these systems rely solely on the
multimodal profiles of the items, disregarding alternative information sources. Product reviews, which express opinions
and comments about items that have been clicked, watched, or purchased, could be a valuable tool for revealing users’
nuanced preferences toward each item in the recommendation system.

Existing review-based approaches [105, 131] work by integrating reviews as the textual modality to represent items.
However, we believe that a more logical and effective way to integrate reviews would be to view them as a medium to
represent user preference over items, thereby providing additional and complementary preference scores in addition
to numeric ratings or implicit feedback that are typically used to compute recommendations. Such reasoning may be
easily generalized to include user-generated data regarding interacting things (such as images or videos of delivered
products), which we can characterize as multimodal feedback (see Figure 3). When compared to numerical feedback,
which tends to be atomic (single-faceted), multimodal feedback could be considered as composite, revealing nuance and
the user’s multi-faceted opinion of the products [3].

7.3 Fine-grained multimodal features

Multimodality is a way to effectively profile the multi-faceted aspects of items and users’ preference (e.g., I bought this
smartphone because its technical description is quite exhaustive and its display amazes me; I like this song since I love
the music and the lyrics). Nevertheless, analyzing and learning users’ tastes at modalities’ granularity might not be
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enough to uncover all aspects underlying every user-item interaction. In contexts where modalities bring a great source
of heterogeneous information, a finer-grained feature processing could help better unveil hidden facets. For instance,
when it comes to the recommendation of fashion items (e.g., dresses, shoes, jewelry), user attention may be captivated
by specific item visual characteristics, such as colors, shapes, and particular patterns and motifs [27]. Similarly, a song
involves several features [57] (i.e., pitch, rhythm, and dynamics), which could differently influence users’ attitudes
towards it. Uncovering and understanding details at this finer granularity should be one of the main directions toward
the novel recommendation approaches of multimedia products and services.

7.4 An extensive and fair evaluation of multimedia recommender systems

To date, very limited effort has been put into the extensive evaluation of multimedia recommender systems. The
principal reason is that, apart from some recent frameworks [84, 133] which integrate multimedia recommender systems
into their pipelines, each novel multimedia recommender system introduces its own implementation of the proposed
approach with different dataset pre-processing solutions, sampling strategies, and evaluation protocols. Indeed, this may
undermine the fair comparison of multimedia recommender systems, which cannot benefit from shared and unified
training and evaluation frameworks to run rigorous and reproducible experiments as in other recommendation domains
and scenarios [2, 130]. To this end, we plan to start from the initial benchmarking analysis we proposed in this work
to further assess the reproducibility of the tested baselines. On such basis, the next steps would be to evaluate the
recommendation performance under more comprehensive experimental settings involving, for instance, (i) a larger
plethora of pre-trained deep learning models for the extraction of multimodal features; (ii) other multimodal datasets
involving all modalities (as our framework offers the possibility to inject visual, textual, and audio features); (iii) a more
careful evaluation of such models under beyond-accuracy recommendation metrics [70, 71].

8 CONCLUSION

In this paper, we highlighted the importance of formalizing the multimedia recommendation task under the lens of
multimodal deep learning. By recognizing how the main recommendation approaches in the related literature fall into
some recurrent strategy patterns, we outlined a unified multimodal schema that, following the established multimodal
deep learning pipeline, formalizes the core stages of multimedia recommendation as: (i) multimodal input data, (ii)
multimodal feature processing, (iii) multimodal feature fusion, and (iv) the multimodal recommendation task. After that,
we applied the proposed schema to four multimedia recommendation scenarios to conceptually validate its rationale,
and integrated the same schema into Elliot to benchmark the results of six state-of-the-art multimedia recommender
systems. The obtained results, which assess the recommendation performance in terms of accuracy and beyond-accuracy
measures, along with the proposed formal schema, gave the opportunity to highlight technical challenges as well as
possible avenues to address such challenges in future directions.
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