The 17th ACM Conference on Recommender Systems Singapore, SG, 09-20-2023

Main Track - Reproducibility

Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis

> Vito Walter Anelli¹, **Daniele Malitesta¹**, Claudio Pomo¹, Alejandro Bellogín², Eugenio Di Sciascio¹, Tommaso Di Noia¹

¹Politecnico di Bari, Bari (Italy), **email: <u>firstname.lastname@poliba.it</u>** ²Universidad Autónoma de Madrid, Madrid (Spain), **email: <u>alejandro.bellogin@uam.es</u>**

Outline

- Introduction and motivations
- Background and reproducibility analysis
- Replication of prior results (RQ1)
- Benchmarking graph CF approaches using alternative baselines (RQ2)
- Extending the experimental comparison to new datasets (RQ3 RQ4)
- Conclusion and future work

Introduction and motivations

Graph collaborative filtering: message-passing

Bari

In collaborative filtering (CF), graph convolutional networks (GCNs) have gained momentum thanks to their ability to aggregate neighbor nodes information into ego nodes at multiple hops (i.e., message-passing), thus effectively distilling the collaborative signal

Graph collaborative filtering: a non-exhaustive timeline

Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis The 17th ACM Conference on Recommender Systems (Singapore, 18-22 September 2023)

Reproducibility and graph collaborative filtering

- Reproducibility in machine learning research is the cutting-edge task involving the replication of experimental results under the same share settings [Bellogín and Said, Anelli et al. (2021a-2022), Ferrari Dacrema et al. (2019-2021), Sun et al.]
- In graph collaborative filtering, reproducibility is not always feasible since novel approaches usually tend to
 - **copy and paste previous results** from the baselines
 - do not provide full details about the experimental settings
- What the **research community** should **seek to**
 - provide more detailed descriptions of the experimental settings
 - establish standard evaluation metrics and experimental protocols

Research questions

- **RQ1.** Is the **state-of-the-art** (i.e., the six most important papers) of **graph collaborative filtering** (graph CF) **replicable**?
- **RQ2.** How does the **state-of-the-art** of **graph CF position** with respect to **classic CF** state-of-the-art?
- **RQ3.** How does the **state-of-the-art** of **graph CF** perform **on datasets** from **different domains** and with **different topological** aspects, **not commonly adopted** for graph CF recommendation?
- **RQ4.** What **information (or lack of it)** impacts the **performance** of the **graph CF** methods across the **various datasets**?

Background and reproducibility analysis

Background notions

Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis The 17th ACM Conference on Recommender Systems (Singapore, 18-22 September 2023)

Selected graph-based recommender systems

Model	Venue	Year	Strategy	
NGCF SIGIR		2019	• Pioneer approach in graph CF	
			• Inter-dependencies among ego and neighbor nodes	
DCCF	SICIR	2020	• Disentangles users' and items' into intents and weights their importance	
DGOF	SIGIN	2020	• Updates graph structure according to those learned intents	
L'ILCON CICID		2020	• Lightens the graph convolutional layer	
LightGON	SIGIN	2020	• Removes feature transformation and non-linearities	
COL	SIGIR 20	SICID	2021	• Brings self-supervised and contrastive learning to recommendation
SGL		2021	• Learns multiple node views through node/edge dropout and random walk	
Illtra CON	CIIZM	2021	• Approximates infinite propagation layers through a constraint loss and negative sampling	
UltraGUN	UIKM	2021	• Explores item-item connections	
CECE	CIIZM	2021	• Questions graph convolution in recommendation through graph signal processing	
GrUf	UINM	2021	• Proposes a strong close-form algorithm	

Analysis on reported baselines

		Models							
Families	Baselines	NGCF [71]	DGCF [73]	LightGCN [28]	SGL [78]	UltraGCN [47]	GFCF [59]		
			Use	ed as graph CF baseli	ne in (2021 — preser	nt)			
		[10, 13, 32, 62, 77, 84]	[19, 39, 46, 74, 75, 92]	[40, 54, 78, 82, 88, 89]	[22, 46, 77, 82, 85, 93]	[17, 24, 42, 48, 95, 96]	[4, 5, 41, 50, 80, 96]		
	MF-BPR [55]	1	1			1			
	NeuMF [29]	1							
	CMN [18]	1							
	MacridVAE [44]		1						
	Mult-VAE [38]			1	1		1		
Classic CF	DNN+SSL [86]				1				
	ENMF [11]					1			
	CML [30]					1			
	DeepWalk [52]					1			
	LINE [66]					1			
	Node2Vec [25]					1			
	NBPO [91]					1			

- Most of the **approaches** (apart from UltraGCN) are **compared against** a **small subset** of **classical CF** solutions
- The recent literature has raised concerns about usually-untested strong CF baselines [Anelli et al. (2021a-2022), Ferrari Dacrema et al. (2019-2021), Zhu et al.]

Analysis on reported baselines (cont.)

		Models									
Families	Baselines	NGCF [71]	DGCF [73]	LightGCN [28]	SGL [78]	UltraGCN [47]	GFCF [59]				
			Used as graph CF baseline in (2021 — present)								
		[10, 13, 32, 62, 77, 84]	[19, 39, 46, 74, 75, 92]	[40, 54, 78, 82, 88, 89]	[22, 46, 77, 82, 85, 93]	[17, 24, 42, 48, 95, 96]	[4, 5, 41, 50, 80, 96]				
	HOP-Rec [83]	1									
	GC-MC [68]	1	1								
	PinSage [87]	1									
	NGCF [71]		1	1	1	1	1				
	DisenGCN [43]		1								
Graph CF	GRMF [53]			1			1				
<i>p</i>	GRMF-Norm [28]			1			1				
	NIA-GCN [64]					1					
	LightGCN [28]				1	1	1				
	DGCF [73]					1					
	LR-GCCF [14]					1					
	SCF [94]					1					
	BGCF [63]					1					
	LCFN [90]					1					

- Conversely, most of the **approaches** are **compared against graph CF** solutions
- Orange ticks indicate that no extensive comparison among the selected baselines is performed (for chronological reasons)

Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis The 17th ACM Conference on Recommender Systems (Singapore, 18-22 September 2023)

Analysis on reported datasets

Models	Gowalla	Yelp 2018	Amazon Book	Alibaba-iFashion	Movielens 1M	Amazon Electronics	Amazon CDs
NGCF	1	1	1				
DGCF	1	1	1				
LightGCN	1	1	1				
SGL		1	1	1			
UltraGCN	1	1	1		1	1	1
GFCF	1	1	1				

- Only a **limited subset** of **shared** recommendation **datasets**
- We include **novel**, never-investigated **datasets**

Analysis on experimental comparison

- NGCF train all baselines from scratch
- DGCF reports the results directly from the NGCF paper for the shared baselines
- LightGCN, SGL, and UltraGCN copy and paste from the original papers
- GFCF reproduce the results from LightGCN as the baselines are exactly the same
- Some authors are shared across such works

What we have done

- Re-implement from scratch all baselines by carefully following the original works
- Train/evaluate them within Elliot [Anelli et al. (2021b), Malitesta et al. (2023a)]
- Our goal is to provide a fair and repeatable experimental environment
- Use the same hyper-parameter settings as reported in the original papers and codes

Replication of prior results (RQ1)

Settings

- All approaches (except for SGL) use the same datasets filtering and splitting (80/20 hold-out splitting user-wise)
- **10% of the training** is left for **validation** for the **tuning of hyper-parameters (no indication** in the papers and/or codes)
- All unrated items as evaluation protocol
- Evaluation through the **Recall@20** and **nDCG@20** (**Recall@20** as **validation metric**)
- The best settings of hyper-parameters are usually shared in the paper and/or code

Results

Datasets	Models	0	urs	Ori	ginal	Performa	ance Shift
		Recall	nDCG	Recall	nDCG	Recall	nDCG
	NGCF	0.1556	0.1320	0.1569	0.1327	$-1.3 \cdot 10^{-03}$	$-7 \cdot 10^{-04}$
	DGCF	0.1736	0.1477	0.1794	0.1521	$-5.8 \cdot 10^{-03}$	$-4.4 \cdot 10^{-03}$
Complia	LightGCN	0.1826	0.1545	0.1830	0.1554	$-4 \cdot 10^{-04}$	$-9 \cdot 10^{-04}$
Gowalia	SGL^*					_	_
	UltraGCN	0.1863	0.1580	0.1862	0.1580	$+1 \cdot 10^{-04}$	0
	GFCF	0.1849	0.1518	0.1849	0.1518	0	0
	NGCF	0.0556	0.0452	0.0579	0.0477	$-2.3 \cdot 10^{-03}$	$-2.5 \cdot 10^{-03}$
	DGCF	0.0621	0.0505	0.0640	0.0522	$-1.9 \cdot 10^{-03}$	$-1.7 \cdot 10^{-03}$
Val. 2018	LightGCN	0.0629	0.0516	0.0649	0.0530	$-2 \cdot 10^{-03}$	$-1.4 \cdot 10^{-03}$
1elp 2018	SGL	0.0669	0.0552	0.0675	0.0555	$-6 \cdot 10^{-04}$	$-3 \cdot 10^{-04}$
	UltraGCN	0.0672	0.0553	0.0683	0.0561	$-1.1 \cdot 10^{-03}$	$-8 \cdot 10^{-04}$
	GFCF	0.0697	0.0571	0.0697	0.0571	0	0
	NGCF	0.0319	0.0246	0.0337	0.0261	$-1.8 \cdot 10^{-03}$	$-1.5 \cdot 10^{-03}$
	DGCF	0.0384	0.0295	0.0399	0.0308	$-1.5 \cdot 10^{-03}$	$-1.3 \cdot 10^{-03}$
Amoron Pool	LightGCN	0.0419	0.0323	0.0411	0.0315	$+8 \cdot 10^{-04}$	$+8 \cdot 10^{-04}$
Amazon book	SGL	0.0474	0.0372	0.0478	0.0379	$-4 \cdot 10^{-04}$	$-7 \cdot 10^{-04}$
	UltraGCN	0.0688	0.0561	0.0681	0.0556	$+7 \cdot 10^{-04}$	$+5 \cdot 10^{-04}$
	GFCF	0.0710	0.0584	0.0710	0.0584	0	0

*Results are not provided since SGL was not originally trained and tested on Gowalla.

- The **most significant** performance **shift** is in the order of **10**⁻³
- **GFCF is the best replicated** one (no random initialization of model weights)
- NGCF and DGCF rarely achieve 10⁻⁴ because of the random initializations and stochastic learning processes involved
- **Replicability is ensured** and the **copy-paste** practise did **not hurt the results**

Benchmarking graph CF approaches using alternative baselines (RQ2)

Settings

- Expand the investigation to four classic CF recommender systems: UserkNN, ItemkNN, RP³β, EASE^R [Ferrari Dacrema et al. (2019), Anelli et al. (2022)]
- Consider two **unpersonalized** approaches (**MostPop** and **Random**)
- Follow the exact same 80/20 train/test splitting, and retain our version of the 10% of the training as validation
- Use Tree-structured Parzen Estimator (with 20 exploration) [Bergstra et al.]
- **Recall@20** is used as **validation metric**

Results

Families	Models	Gowalla		Yelp 2018		Amazo	Amazon Book	
		Recall	nDCG	Recall	nDCG	Recall	nDCG	
Reference	MostPop Random	$\begin{array}{c} 0.0416 \\ 0.0005 \end{array}$	$0.0316 \\ 0.0003$	$\begin{array}{c} 0.0125 \\ 0.0005 \end{array}$	$0.0101 \\ 0.0004$	$\begin{array}{c} 0.0051 \\ 0.0002 \end{array}$	$0.0044 \\ 0.0002$	
Classic CF	$\begin{array}{l} \text{UserkNN} \\ \text{ItemkNN} \\ \text{RP}^{3}\beta \\ \text{EASE}^{R*} \end{array}$	$\begin{array}{c} 0.1685 \\ 0.1409 \\ 0.1829 \\ 0.1661 \end{array}$	$\begin{array}{c} 0.1370 \\ 0.1165 \\ 0.1520 \\ 0.1384 \end{array}$	$\begin{array}{c} 0.0630 \\ 0.0610 \\ 0.0671 \\ 0.0655 \end{array}$	$\begin{array}{c} 0.0528 \\ 0.0507 \\ \underline{0.0559} \\ 0.0552 \end{array}$	0.0582 0.0634 0.0683 0.0710	$\begin{array}{c} 0.0477 \\ 0.0524 \\ 0.0565 \\ \underline{0.0567} \end{array}$	
Graph CF	NGCF DGCF LightGCN SGL UltraGCN GFCF	0.1556 0.1736 0.1826 0.1863 <u>0.1849</u>	0.1320 0.1477 <u>0.1545</u> — 0.1580 0.1518	0.0556 0.0621 0.0629 0.0669 <u>0.0672</u> 0.0697	0.0452 0.0505 0.0516 0.0552 0.0553 0.0571	$\begin{array}{c} 0.0319\\ 0.0384\\ 0.0419\\ 0.0474\\ \underline{0.0688}\\ \textbf{0.0710} \end{array}$	0.0246 0.0295 0.0323 0.0372 0.0561 0.0584	

*Results for EASE^R on Amazon Book are taken from <u>BARS Benchmark</u>.

- Neither MostPop nor Random get acceptable results: popularity bias is not present in the datasets or was removed (see later)
- Some of the classic CF approaches reach better performance than some graph CF baselines, and on Yelp 2018 and Amazon Book they reach best or second-to-best performance

Extending the experimental comparison to new datasets (RQ3 - RQ4)

Settings

Statistics	Gowalla	Yelp 2018	Amazon Book	Allrecipes	BookCrossing
Users	29,858	31,668	52,643	10,084	6,754
Items	40,981	38,048	91,599	8,407	$13,\!670$
Edges	810,128	$1,\!237,\!259$	2,380,730	80,540	234,762
Density	0.0007	0.0010	0.0005	0.0010	0.0025
Avg. Deg. (U)	27.1327	39.0697	45.2241	7.9869	34.7590
Avg. Deg. (I)	19.7684	32.5184	25.9908	9.5801	17.1735

- Two novel datasets: Allrecipes and BookCrossing with discordant characteristics compared to the other datasets
- Allrecipes:
 - **users are more numerous** than items
 - much lower average user and item degrees
- BookCrossing:
 - lowest ratio between users and items
 - **much higher density** than the other datasets
- Useful to assess the performance in different (and neverexplored) topological settings
- Use the **same experimental** setting from **RQ2** but with **validation set** (10% of the training set)

Results

Families	Models	Allre	Allrecipes		rossing
		Recall	nDCG	Recall	nDCG
Reference	MostPop Random	$\frac{0.0472}{0.0024}$	$\frac{0.0242}{0.0010}$	$\begin{array}{c} 0.0352 \\ 0.0013 \end{array}$	$\begin{array}{c} 0.0319 \\ 0.0011 \end{array}$
Classic CF	$\begin{array}{l} \text{UserkNN} \\ \text{ItemkNN} \\ \text{RP}^{3}\beta \\ \text{EASE}^{R} \end{array}$	$\begin{array}{c} 0.0339 \\ 0.0326 \\ 0.0170 \\ 0.0351 \end{array}$	$\begin{array}{c} 0.0188 \\ 0.0180 \\ 0.0089 \\ 0.0192 \end{array}$	0.0871 0.0779 0.0941 <u>0.0925</u>	0.0769 0.0739 <u>0.0821</u> 0.0847
Graph CF	NGCF DGCF LightGCN SGL UltraGCN GFCF	0.0291 0.0448 0.0459 0.0365 0.0475 0.0101	0.0144 0.0234 0.0236 0.0192 0.0248 0.0051	$\begin{array}{c} 0.0670\\ 0.0643\\ 0.0803\\ 0.0716\\ 0.0800\\ 0.0819 \end{array}$	$\begin{array}{c} 0.0546 \\ 0.0543 \\ 0.0660 \\ 0.0600 \\ 0.0651 \\ 0.0712 \end{array}$

- Classic CF methods are very competitive
- Especially on **BookCrossing**, the **classic CF** baselines are the **top-performing** approaches
- Only **UltraGCN and LightGCN** keep their **performance** as observed in the previous datasets
- For the **other graph-based** ones, the **performance** significantly **drops**

Discussion (graph-based models' ranking)

Metric		Gowalla	Yelp 2018	Amazon Book	Allrecipes	BookCrossing
Recall	1. 2. 3. 4. 5. 6.	$\begin{array}{l} \mbox{UltraGCN} (+19.73\%) \\ \mbox{GFCF} (+18.83\%) \\ \mbox{LightGCN} (+17.35\%) \\ \mbox{DGCF} (+11.57\%) \\ \mbox{NGCF} (-) \\ \mbox{SGL}^* (-) \end{array}$	GFCF (+25.36%) UltraGCN (+20.86%) SGL (+20.32%) LightGCN (+13.13%) DGCF (+11.69%) NGCF (-)	$\begin{array}{l} {\rm GFCF}\;(+122.57\%)\\ {\rm UltraGCN}\;(+115.67\%)\\ {\rm SGL}\;(+48.59\%)\\ {\rm LightGCN}\;(+31.35\%)\\ {\rm DGCF}\;(+20.38\%)\\ {\rm NGCF}\;(-)\\ \end{array}$	$\begin{array}{l} \mbox{UltraGCN} (+370.30\%) \\ \mbox{LightGCN} (+354.46\%) \\ \mbox{DGCF} (+343.56\%) \\ \mbox{SGL} (+261.39\%) \\ \mbox{NGCF} (+188.12\%) \\ \mbox{GFCF} (-) \end{array}$	$\begin{array}{l} {\rm GFCF} \ (+27.37\%) \\ {\rm LightGCN} \ (+24.88\%) \\ {\rm UltraGCN} \ (+24.42\%) \\ {\rm SGL} \ (+11.35\%) \\ {\rm NGCF} \ (+4.20\%) \\ {\rm DGCF} \ (-) \end{array}$
nDCG	1. 2. 3. 4. 5. 6.	$\begin{array}{c} \mbox{UltraGCN} (+19.70\%) \\ \mbox{LightGCN} (+17.05\%) \\ \mbox{GFCF} (+15.00\%) \\ \mbox{DGCF} (+11.89\%) \\ \mbox{NGCF} (-) \\ \mbox{SGL}^* (-) \end{array}$	GFCF (+26.33%) UltraGCN (+22.35%) SGL (+22.12%) LightGCN (+14.16%) DGCF (+11.73%) NGCF (-)	$\begin{array}{c} {\rm GFCF} \ (+137.40\%) \\ {\rm UltraGCN} \ (+128.05\%) \\ {\rm SGL} \ (+51.22\%) \\ {\rm LightGCN} \ (+31.30\%) \\ {\rm DGCF} \ (+19.92\%) \\ {\rm NGCF} \ (-) \end{array}$	$\begin{array}{c} \mbox{UltraGCN} (+386.27\%) \\ \mbox{LightGCN} (+362.75\%) \\ \mbox{DGCF} (+358.82\%) \\ \mbox{SGL} (+276.47\%) \\ \mbox{NGCF} (+182.35\%) \\ \mbox{GFCF} (-) \end{array}$	$\begin{array}{c} {\rm GFCF} \ (+31.12\%) \\ {\rm LightGCN} \ (+21.55\%) \\ {\rm UltraGCN} \ (+19.89\%) \\ {\rm SGL} \ (+10.50\%) \\ {\rm NGCF} \ (+0.55\%) \\ {\rm DGCF} \ (-) \end{array}$

*SGL is not classifiable on the Gowalla dataset as results were not calculated in the original paper.

- **UltraGCN and GFCF** are the two **best-performing** approaches
 - All the **other approaches rank** according to the **chronological** order
- On Allrecipes and BookCrossing

- **UltraGCN** preserves its role of **leading** approach
- GFCF and DGCF performance is very fluctuating
- LightGCN is in the top positions and surpasses other models which should ideally outperform it (e.g., SGL)
- NGCF poor performance is confirmed

Discussion (analysis on the node degree)

- We reinterpret node degree as **information flow from neighbor nodes to the ego nodes** after **multiple hops**
- Only users as ending nodes because accuracy metrics are calculated user-wise
- Information flow at 1, 2, and 3 hops:

information after 1-hop

Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis The 17th ACM Conference on Recommender Systems (Singapore, 18-22 September 2023)

Analysis on the node degree (1-hop)

Indication of the activeness of users on the platform

• The **trend** is even **more evident** on **GFCF**

Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis The 17th ACM Conference on Recommender Systems (Singapore, 18-22 September 2023)

Analysis on the node degree (2-hop)

+50% +25% 0% -25% -50% iii iii iii iv Allrecipes - Graph CF Allrecipes - Classic CF BookCrossing - Graph CF BookCrossing - Classic CF NGCF DGCF $-\oplus$ UserkNN \rightarrow ItemkNN $-\oplus$ RP³ β $- \triangle$ EASE^R

- Models **favour the warm users** who enjoyed **popular items** over the cold users who enjoyed niche items
- On Allrecipes, UltraGCN, DGCF, and LightGCN show less discriminatory behavior across quartiles; SGL and NGCF show a higher slope that is comparable to classic CF methods; GFCF behavior is even more accentuated than the 1-hop setting
- On **BookCrossing**, the trend is **almost aligned** across all models

Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis The 17th ACM Conference on Recommender Systems (Singapore, 18-22 September 2023)

Indication of the influence of items' popularity on users

Analysis on the node degree (3-hop)

Indication of the influence of co-interacting users' activeness on users

- On Allrecipes, UltraGCN, DGCF, and LightGCN exhibit more consistency across quartiles, while NGCF, SGL, and GFCF have a more disparate range of results
- On **BookCrossing**, the information at the **3-hop is not providing** more insights than the 2-hop

Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis The 17th ACM Conference on Recommender Systems (Singapore, 18-22 September 2023)

Conclusion and future work

Conclusion

- **Replicate** the results of **six state-of-the-art graph CF** methods
- We include other state-of-the-art approaches and other (unexplored) datasets
- The **topological** graph **characteristics** (i.e., **node degree**) may impact the performance
- This happens **especially** for the **information flow at 2-hop** (i.e., user activeness + item popularity)

Future work

- Further investigation into diversity and fairness of graph CF approaches
- Analyze the **impact of other topological** graph characteristics on the performance (currently on arXiv **[Malitesta et al. (2023b)]**)

Useful resources

i∃ README.md

Graph-RSs-Reproducibility

This is the official repository for the paper "Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis", accepted at RecSys 2023 (Reproducibility Track).

This repository is heavily dependent on the framework Elliot, so we suggest you refer to the official GitHub page and documentation.

Pre-requisites

We implemented and tested our models in PyTorch==1.12.0, with CUDA 10.2 and cuDNN 8.0. Additionally, some of graph-based models require PyTorch Geometric, which is compatible with the versions of CUDA and PyTorch we indicated above.

Installation guidelines: scenario #1

If you have the possibility to install CUDA on your workstation (i.e., 10.2), you may create the virtual environment with the requirement files we included in the repository, as follows:

PYTORCH ENVIRONMENT (CUDA 10.2, cuDNN 8.0)

\$ python3.8 -m venv venv \$ source venv/bin/activate \$ pip install -- upgrade pip \$ pip install -r requirements.txt \$ pip install -r requirements_torch_geometric.txt

Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis The 17th ACM Conference on Recommender Systems (Singapore, 18-22 September 2023)

A

Q

A Topology-aware Analysis of Graph Collaborative Filtering

A Topology-aware Analysis of Graph Collaborative Filtering

Daniele Malitesta Politecnico di Bari daniele.malitesta@poliba.it Claudio Pomo Politecnico di Bari claudio.pomo@poliba.it

Vito W. Anelli Politecnico di Bari vitowalter.anelli@poliba.it

Alberto C. M. Mancino Politecnico di Bari alberto.mancino@poliba.it Eugenio Di Sciascio Politecnico di Bari eugenio.disciascio@poliba.it

Tommaso Di Noia Politecnico di Bari tommaso.dinoia@poliba.it

[Malitesta et al. (2023b)]

Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis The 17th ACM Conference on Recommender Systems (Singapore, 18-22 September 2023)

arXiv

 R^{G}

References 1/2

[van den Berg et al.] 2017. Graph convolutional matrix completion. CoRR abs/1706.02263. [Ying et al.] 2018. Graph Convolutional Neural Networks for Web-Scale Recommender Systems. In KDD. ACM, 974–983. [Wang et al. (2019a)] 2019. Neural Graph Collaborative Filtering. In SIGIR. ACM, 165–174. [Wang et al. (2019b)] 2019. KGAT: Knowledge Graph Attention Network for Recommendation. In KDD. ACM, 950–958. [Chen et al.] 2020. Revisiting Graph Based Collaborative Filtering: A Linear Residual Graph Convolutional Network Approach. In AAAI. AAAI Press, 27–34. [He et al.] 2020. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. In SIGIR. ACM, 639-648. [Wang et al. (2020)] 2020. Disentangled Graph Collaborative Filtering. In SIGIR. ACM, 1001–1010. [Tao et al.] 2020. MGAT: Multimodal Graph Attention Network for Recommendation. Inf. Process. Manag. 57, 5 (2020), 102277. [Wu et al.] 2021. Self-supervised Graph Learning for Recommendation. In SIGIR. ACM, 726–735. [Yu et al.] 2022. Are Graph Augmentations Necessary?: Simple Graph Contrastive Learning for Recommendation. In SIGIR. ACM, 1294–1303. [Mao et al.] 2021. Ultra GCN: Ultra Simplification of Graph Convolutional Networks for Recommendation. In CIKM. ACM, 1253–1262. [Peng et al.] 2022. SVD-GCN: A Simplified Graph Convolution Paradigm for Recommendation. In CIKM. ACM, 1625–1634. [Shen et al.] 2021. How Powerful is Graph Convolution for Recommendation?. In CIKM. ACM, 1619–1629. [Sun et al.] 2021. HGCF: Hyperbolic Graph Convolution Networks for Collaborative Filtering. In WWW. ACM / IW3C2, 593-601. [Zhang et al.] 2022. Geometric Disentangled Collaborative Filtering. In SIGIR. ACM, 80–90. [Wei et al.] 2022. Dynamic Hypergraph Learning for Collaborative Filtering. In CIKM. ACM, 2108–2117. [Xia et al.] 2022. *Hypergraph Contrastive Collaborative Filtering*. In SIGIR. ACM, 70–79. [Bellogín and Said] 2021. Improving accountability in recommender systems research through reproducibility. User Model. User Adapt. Interact. 31, 5 (2021), 941–977.

[Anelli et al. (2021a)] 2021. Reenvisioning the comparison between Neural Collaborative Filtering and Matrix Factorization. In RecSys. ACM, 521–529.

[Anelli et al. (2022)] 2022. Top-N Recommendation Algorithms: A Quest for the State-of-the-Art. In UMAP. ACM, 121–131.

References 2/2

[Ferrari Dacrema et al. (2019)] 2019. Are we really making much progress? A worrying analysis of recent neural recommendation approaches. In RecSys. ACM, 101–109. [Ferrari Dacrema et al. (2021)] 2021. A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research. ACM Trans. Inf. Syst. 39, 2 (2021), 20:1–20:49.

[Sun et al.] 2020. Are We Evaluating Rigorously? Benchmarking Recommendation for Reproducible Evaluation and Fair Comparison. In RecSys. ACM, 23–32.
[Zhu et al.] 2022. BARS: Towards Open Benchmarking for Recommender Systems. In SIGIR. ACM, 2912–2923.
[Anelli et al. (2021b)] 2021. Elliot: A Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation. In SIGIR. ACM, 2405–2414.
[Malitesta et al. (2023a)] 2023. An Out-of-the-Box Application for Reproducible Graph Collaborative Filtering extending the Elliot Framework. In UMAP (Adjunct Publication). ACM, 12–15.
[Bergetra et al.] 2011. Algorithms for Hubber Parameter Optimization. In NIPS, 2546, 2554.

[Bergstra et al.] 2011. Algorithms for Hyper-Parameter Optimization. In NIPS. 2546–2554.

[Malitesta et al. (2023b)] 2023. A Topology-aware Analysis of Graph Collaborative Filtering. CoRR abs/2308.10778.

