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USEFUL RESOURCES
All useful materials for this tutorial (slides, papers, codes) are 
accessible at our website:

https://sisinflab.github.io/tutorial-gnns-recsys-log2023/
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Why a tutorial on GNNs-based 
recommendation?
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PREVIOUS RELATED TUTORIALS
Novel Landscapes in Graph Neural Networks for Recommendation 5

Table 1. Tutorials on graph-based recommendation.

Reference Venue Website Slides Video

Wang et al. [25] WSDM 2020 [link] [link] 7

El-Kishky et al. [13] KDD 2022 [link] [link] 7

Gao et al. [15] WSDM 2022 [link] [link] [link]

Purificato et al. [20] UMAP 2023 [link] [link] 7

Purificato et al. [19] CIKM 2023 [link] [link] 7

Previous tutorials on graph-based recommendation [13, 15, 19, 20, 25] are
in Table 1, along with the reference, website, slides, and video recording. The
majority of previous tutorials on graph-based recommendation address the topic
of GNNs in recommendation from a general perspective. Conversely, our tutorial
intends to approach the same topic from three main research aspects which
are highly popular in the graph learning field but have not been previously
investigated in graph-based recommendation, namely: reproducibility issues, the
influence of graph topology on model’s performance, and the modeling of node
features. Indeed, the tutorials [19, 20] are the closest to ours in the intention
of providing a more specific analysis of graph-based recommendation (i.e., user
profiling in GNNs); however, our investigation and contributions are di↵erent.

5 Detailed outline

Tutorial duration ! 180 minutes (half-day; theory + hands-on)

Introduction and background ! 20 minutes

– Introduction and motivations of the tutorial ! 5 minutes
– Basics concepts of recommender systems and graph-based recommendation

! 15 minutes

Reproducibility ! 50 minutes

– [Hands-on] Implementation of graph-based recsys in Elliot with PyG and
reproducibility issues ! 20 minutes

– Reproducing the results of state-of-the-art graph-based recommender sys-
tems ! 10 minutes

– Benchmarking analysis of graph-based approaches and classical recommen-
dation systems ! 20 minutes

Graph topology ! 50 minutes

– Concepts and formulations of graph topological properties of the user-item
graph ! 25 minutes

*The table with clickable links is accessible at our website! 

They provide a general 
overview of GNNs-
based recommendation, 
or address different 
topics from our tutorial



• Highly-related topics to LoG.
• Different from previous tutorials.
• Covers three topics widely debated in GRL.
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TOPICS

01 02 03
REPRODUCIBILITY GRAPH TOPOLOGY NODE REPRESENTATION

How can we reproduce SOTA 
graph-based recommendation 
approaches?

Do topological properties of the 
datasets influence the performance 
of graph-based recsys?

What are the most popular 
strategies to represent nodes in 
graph-based recsys?



Total duration: 180 minutes

Introduction and background: 20 minutes
■ Introduction and motivations of the tutorial: 5 minutes

■ Basics concepts of recommender systems & GNNs-based recommendation: 15 minutes

Reproducibility: 60 minutes
■ [Hands-on #1] Implementation and reproducibility of GNNs-based recsys in Elliot with PyG and reproducibility issues: 35 minutes

■ Performance comparison of GNNs-based approaches to traditional recommendation systems: 10 minutes

Break and Q&A: 15 minutes

Graph topology: 30 minutes
■ Concepts and formulations of graph topological properties of the user-item graph: 15 minutes

■ Impact of topological graph properties on the performance of GNNs-based recsys: 15 minutes

Node representation: 45 minutes
■ Design choices to train node embeddings from scratch: 20 minutes

■ [Hands-on #2] Leveraging item’s multimodal side-information for node embeddings: 25 minutes

Closing remarks and Q&A: 10 minutes

TUTORIAL SCHEDULE
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[Ricci et al.]

“Recommender Systems are software tools and 
techniques providing suggestions for items to be 

of use of a user. The suggestions provided are 
aimed at supporting their users in various 

decision-making processes, such as items to buy, 
what music to listen , or what news to read.”
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FACTORIZATION-BASED MODELS
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A NON-EXHAUSTIVE TIMELINE

Pioneer approaches 
proposing GCN-based 
aggregation methods
[van den Berg et al., 
Ying et al.]

Explore inter-dependencies 
between nodes and their 
neighbours [Wang et al. 
(2019a)], use graph attention 
networks to recognize 
meaningful user-item 
interactions at higher-grained 
level [Wang et al. (2019b)]

Lighten the graph 
convolutional layer [Chen 
et al., He et al.], use graph 
attention networks to 
recognize meaningful user-
item interactions at higher-
grained level [Wang et al. 
(2020b), Tao et al.] 

Self-supervised and 
contrastive learning 
[Wu et al., Yu et al.] 

Simplify the message-
passing formulation 
[Mao et al., Peng et al., 
Shen et al.] 

Explore other latent 
spaces [Shen et al., Sun 
et al., Zhang et al.]

Exploit hypergraphs 
[Wei et al., Xia et al.] 

Use graph attention networks 
to recognize meaningful user-
item interactions at finer-
grained [Zhang et al.] level
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FACTORIZATION & MESSAGE-PASSING
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