Graph Neural Networks for Recommendation: Reproducibility, Graph Topology, and Node Representation

Part 0. Introduction and Background

 \bigcirc 20 minutes

The 2nd Learning on Graphs Conference (LoG 2023)

TUTORIALS

ABOUT US

TOMMASO DI NOIA Professor of Computer Science

☑ tommaso.dinoia@poliba.it
Ў @TommasoDiNoia

Daniele MALITESTA Ph.D. Candidate

☑ daniele.malitesta@poliba.it
✓ @dmalitesta

Claudio POMO Research Fellow

Claudio.pomo@poliba.it 🤘 @scne

USEFUL RESOURCES

All useful materials for this tutorial (slides, papers, codes) are accessible at our website:

https://sisinflab.github.io/tutorial-gnns-recsys-log2023/

Scan me!

TABLE OF CONTENTS

01

02

INTRODUCTION & MOTIVATIONS

RECOMMENDER SYSTEMS GNNS & RECOMMENDATION

03

INTRODUCTION & MOTIVATIONS

Why a tutorial on GNNs-based recommendation?

As searched on DBLP through the keywords "graph" and "recommend".

PREVIOUS RELATED TUTORIALS

Reference	Venue	Website	Slides	Video
Wang et al. [25]	WSDM 2020	[link]	[link]	X
El-Kishky et al. [13]	KDD 2022	[link]	[link]	X
Gao et al. [15]	WSDM 2022	[link]	[link]	[link]
Purificato et al. [20]	UMAP 2023	[link]	[link]	X
Purificato et al. [19]	CIKM 2023	[link]	[link]	X

*The table with clickable links is accessible at our website!

They provide a **general overview** of GNNsbased recommendation, or address **different topics** from our tutorial

- Highly-related topics to LoG.
- Different from previous tutorials.
- Covers three topics widely debated in GRL.

TOPICS

01

REPRODUCIBILITY

How can we reproduce SOTA graph-based recommendation approaches?

02

GRAPH TOPOLOGY

O3 NODE REPRESENTATION

TOPICS

01

REPRODUCIBILITY

How can we reproduce SOTA graph-based recommendation approaches?

02

GRAPH TOPOLOGY

Do topological properties of the datasets influence the performance of graph-based recsys?

03

NODE REPRESENTATION

TOPICS

01

REPRODUCIBILITY

How can we reproduce SOTA graph-based recommendation approaches?

02

GRAPH TOPOLOGY

Do topological properties of the datasets influence the performance of graph-based recsys?

03

NODE REPRESENTATION

What are the most popular strategies to represent nodes in graph-based recsys?

TUTORIAL SCHEDULE

Total duration: 180 minutes

Introduction and background: 20 minutes

- Introduction and motivations of the tutorial: <u>5 minutes</u>
- Basics concepts of recommender systems & GNNs-based recommendation: <u>15 minutes</u>

Reproducibility: 60 minutes

- [Hands-on #1] Implementation and reproducibility of GNNs-based recsys in Elliot with PyG and reproducibility issues: 35 minutes
- Performance comparison of GNNs-based approaches to traditional recommendation systems: <u>10 minutes</u>

Break and Q&A: 15 minutes

Graph topology: 30 minutes

- Concepts and formulations of graph topological properties of the user-item graph: <u>15 minutes</u>
- Impact of topological graph properties on the performance of GNNs-based recsys: <u>15 minutes</u>

Node representation: 45 minutes

- Design choices to train node embeddings from scratch: <u>20 minutes</u>
- **Hands-on #2** Leveraging item's multimodal side-information for node embeddings: <u>25 minutes</u>

Closing remarks and Q&A: 10 minutes

RECOMMENDER SYSTEMS

"Recommender Systems are software tools and techniques providing suggestions for items to be of use of a user. The suggestions provided are aimed at supporting their users in various decision-making processes, such as items to buy, what music to listen , or what news to read."

[Ricci et al.]

RECOMMENDATION PIPELINE

Overview of our framework Elliot [Anelli et al.] for reproducible recommender systems evaluation.

RECOMMENDATION DATASET

	<i>i</i> ₁	i ₂	i ₃	i_4	i_5	i ₆
u_1	1	0	1	1	1	0
<i>u</i> ₂	0	0	0	0	1	0
<i>u</i> ₃	1	1	1	0	0	0
u_4	0	0	1	1	0	1

user-item interaction matrix

FACTORIZATION-BASED MODELS

GNNS & RECOMMENDATION

A NON-EXHAUSTIVE TIMELINE

level [Wang et al. (2019b)]

user-item interaction matrix

	u_1	u_2	u_3	u_4	<i>i</i> ₁	i ₂	i ₃	i_4	i_5	i ₆
<i>u</i> ₁	0	0	0	0	1	0	1	1	1	0
<i>u</i> ₂	0	0	0	0	0	0	0	0	1	0
<i>u</i> ₃	0	0	0	0	1	1	1	0	0	0
u_4	0	0	0	0	0	0	1	1	0	1
<i>i</i> ₁	1	0	1	0	0	0	0	0	0	0
i ₂	0	0	1	0	0	0	0	0	0	0
i ₃	1	0	1	1	0	0	0	0	0	0
i ₄	1	0	0	1	0	0	0	0	0	0
i ₅	1	1	0	0	0	0	0	0	0	0
i ₆	0	0	0	1	0	0	0	0	0	0

adjacency matrix

BIPARTITE

user-item interaction matrix

	u_1	u_2	u_3	u_4	i_1	i ₂	i ₃	i_4	i_5	i ₆
<i>u</i> ₁	0	0	0	0	1	0	1	1	1	0
<i>u</i> ₂	0	0	0	0	0	0	0	0	1	0
<i>u</i> ₃	0	0	0	0	1	1	1	0	0	0
u_4	0	0	0	0	0	0	1	1	0	1
i_1	1	0	1	0	0	0	0	0	0	0
i ₂	0	0	1	0	0	0	0	0	0	0
i ₃	1	0	1	1	0	0	0	0	0	0
i ₄	1	0	0	1	0	0	0	0	0	0
i_5	1	1	0	0	0	0	0	0	0	0
i ₆	0	0	0	1	0	0	0	0	0	0

adjacency matrix

UNDIRECTED

user-item interaction matrix

	u_1	u_2	u_3	u_4	i_1	i ₂	i ₃	i_4	i_5	i ₆
u_1	0	0	0	0	1	0	1	1	1	0
<i>u</i> ₂	0	0	0	0	0	0	0	0	1	0
<i>u</i> ₃	0	0	0	0	1	1	1	0	0	0
u_4	0	0	0	0	0	0	1	1	0	1
<i>i</i> ₁	1	0	1	0	0	0	0	0	0	0
i ₂	0	0	1	0	0	0	0	0	0	0
i ₃	1	0	1	1	0	0	0	0	0	0
i_4	1	0	0	1	0	0	0	0	0	0
i ₅	1	1	0	0	0	0	0	0	0	0
i ₆	0	0	0	1	0	0	0	0	0	0

adjacency matrix

MESSAGE-PASSING (LAYER 1)

MESSAGE-PASSING (LAYER 1)

MESSAGE-PASSING (LAYER 2)

MESSAGE-PASSING (LAYER 2)

FACTORIZATION & MESSAGE-PASSING

REFERENCES (1/3)

[Wang et al. (2020a)] Learning and Reasoning on Graph for Recommendation. WSDM 2020: 890-893 [El-Kishky et al.] Graph-based Representation Learning for Web-scale Recommender Systems. KDD 2022: 4784-4785

[<u>Gao et al.</u>] Graph Neural Networks for Recommender System. WSDM 2022: 1623-1625 [<u>Purificato et al. (2023a)</u>] Tutorial on User Profiling with Graph Neural Networks and Related Beyond-Accuracy Perspectives. UMAP 2023: 309-312

[<u>Purificato et al. (2023b)</u>] Leveraging Graph Neural Networks for User Profiling: Recent Advances and Open Challenges. CIKM 2023: 5216-5219

[<u>Ricci et al.</u>] Recommender Systems Handbook. Springer 2011, ISBN 978-0-387-85819-7 [<u>Anelli et al.</u>] Elliot: A Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation. SIGIR 2021: 2405-2414

[van den Berg et al.] Graph Convolutional Matrix Completion. CoRR abs/1706.02263 (2017) [Ying et al.] Graph Convolutional Neural Networks for Web-Scale Recommender Systems. KDD 2018: 974-983

[Wang et al. (2019a)] Neural Graph Collaborative Filtering. SIGIR 2019: 165-174

[<u>Wang et al. (2019b)</u>] KGAT: Knowledge Graph Attention Network for Recommendation. KDD 2019: 950-958

REFERENCES (2/3)

[<u>Chen et al.</u>] Revisiting Graph Based Collaborative Filtering: A Linear Residual Graph Convolutional Network Approach. AAAI 2020: 27-34

[<u>He et al.</u>] LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020: 639-648

[<u>Wang et al. (2020b)</u>] Disentangled Graph Collaborative Filtering. SIGIR 2020: 1001-1010 [<u>Tao et al.]</u> MGAT: Multimodal Graph Attention Network for Recommendation. Inf. Process. Manag. 57(5): 102277 (2020)

[<u>Wu et al.</u>] Self-supervised Graph Learning for Recommendation. SIGIR 2021: 726-735 [<u>Yu et al.</u>] Are Graph Augmentations Necessary?: Simple Graph Contrastive Learning for Recommendation. SIGIR 2022: 1294-1303

[<u>Mao et al.</u>] UltraGCN: Ultra Simplification of Graph Convolutional Networks for Recommendation. CIKM 2021: 1253-1262

[<u>Peng et al.</u>] SVD-GCN: A Simplified Graph Convolution Paradigm for Recommendation. CIKM 2022: 1625-1634

[<u>Shen et al.</u>] How Powerful is Graph Convolution for Recommendation? CIKM 2021: 1619-1629 [<u>Sun et al.</u>] HGCF: Hyperbolic Graph Convolution Networks for Collaborative Filtering. WWW 2021: 593-601

REFERENCES (3/3)

[<u>Zhang et al.</u>] Geometric Disentangled Collaborative Filtering. SIGIR 2022: 80-90 [<u>Wei et al.</u>] Dynamic Hypergraph Learning for Collaborative Filtering. CIKM 2022: 2108-2117 [<u>Xia et al.</u>] Hypergraph Contrastive Collaborative Filtering. SIGIR 2022: 70-79

THANKS!

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

Scan me!