

The 2nd Workshop on Multi-Objective Recommender Systems Seattle, WA, USA, September 23, 2022 RecSys 2022 Workshops

How Neighborhood Exploration influences Novelty and Diversity in Graph Collaborative Filtering

Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, Eugenio Di Sciascio, Antonio Ferrara, <u>Daniele Malitesta</u>, <u>Claudio Pomo</u>

Politecnico di Bari

Bari, Italy email: firstname.lastname@poliba.it

Introduction and Contributions

Graph collaborative filtering

In collaborative filtering (CF), graph convolutional networks (GCNs) have gained momentum thanks to their ability to **aggregate neighbor** nodes **information** into ego nodes at multiple hops (i.e., **message-passing**), thus effectively **distilling** the **collaborative signal**.

Neighborhood exploration strategies

Explicit message-passing

It is always possible to derive a **formulation** where user and **item** node representations are **explicitly updated** through their multi-hop neighbors.

Implicit message-passing

We **introduce** the concept of **implicit** message-passing, where message aggregation is **replaced** and improved through ad-hoc **mathematical proxies**.

$$\boldsymbol{s}_{\boldsymbol{u}} = \boldsymbol{r}_{\boldsymbol{u}} \left(\tilde{\boldsymbol{R}}^T \tilde{\boldsymbol{R}} + \alpha \boldsymbol{D}_I^{-\frac{1}{2}} \bar{\boldsymbol{U}} \bar{\boldsymbol{U}}^T \boldsymbol{D}_I^{\frac{1}{2}} \right)$$

$$\mathcal{L}_{I} = -\sum_{(u,i) \in N^{+}} \sum_{j \in S(i)} \omega_{i,j} \log(\sigma(e_{u}^{\top} e_{j}))$$

Multi-objective recommendation and graph CF

Graph CF has shown **remarkable results** on the sole recommendation **accuracy**. However, designing RSs trying to **optimize multiple objectives** at once is the new goal in the recent literature, as a way to embrace both **users' and business' interests**.

So far, in graph CF:

- limited attention put on the accuracy-diversity trade-off
- no in-depth analysis of the neighborhood exploration influence

Our contributions:

- assessment of the accuracy-novelty-diversity recommendation trade-off of explicit and implicit message-passing models from the state-of-the-art (six baselines)
- simple mathematical reformulation of explicit message-passing, where same- and different-type node explorations are highlighted, and extend the trade-off study analysis on this new dimension

Explicit message-passing reformulation

Useful notation

- $\mathbf{e}_{u}^{(0)}$, $\mathbf{e}_{i}^{(0)}$ are the user/item node embeddings
- $\omega(\cdot)$ is the message aggregation function
- $ullet \mathcal{N}(\cdot)$ is the neighborhood of the ego node

Message-passing reformulation (1/2)

After one hop (Eq.1):

 $\mathbf{e}_{u}^{(1)} = \omega\left(\left\{\mathbf{e}_{i'}^{(0)}, \forall i' \in \mathcal{N}(u)\right\}\right), \quad \mathbf{e}_{i}^{(1)} = \omega\left(\left\{\mathbf{e}_{u'}^{(0)}, \forall u' \in \mathcal{N}(i)\right\}\right)$

After two hops (Eq.2):

$$\mathbf{e}_{u}^{(2)} = \omega\left(\left\{\mathbf{e}_{i'}^{(1)}, \forall i' \in \mathcal{N}(u)\right\}\right), \quad \mathbf{e}_{i}^{(2)} = \omega\left(\left\{\mathbf{e}_{u'}^{(1)}, \forall u' \in \mathcal{N}(i)\right\}\right)$$

After three hops (Eq.3): $\mathbf{e}_{u}^{(3)} = \omega\left(\left\{\mathbf{e}_{i'}^{(2)}, \forall i' \in \mathcal{N}(u)\right\}\right), \quad \mathbf{e}_{i}^{(3)} = \omega\left(\left\{\mathbf{e}_{u'}^{(2)}, \forall u' \in \mathcal{N}(i)\right\}\right)$

Message-passing reformulation (2/2)

We rewrite Eq.2 and Eq.3 through Eq.1 and Eq.2:

$$\begin{aligned} \mathbf{e}_{u}^{(2)} &= \omega \Big(\Big\{ \omega \Big(\Big\{ \mathbf{e}_{u''}^{(0)}, \underbrace{\forall u'' \in \mathcal{N}(i') \setminus \{u\}}_{2\text{-hop}} \Big\} \Big), \underbrace{\forall i' \in \mathcal{N}(u)}_{1\text{-hop}} \Big\} \Big) \\ \mathbf{e}_{u}^{(3)} &= \omega \Big(\Big\{ \omega \Big(\Big\{ \mathbf{e}_{i'''}^{(0)}, \underbrace{\forall i''' \in \mathcal{N}(u'') \setminus \{i''\}}_{3\text{-hop}} \Big\} \Big), \underbrace{\forall u'' \in \mathcal{N}(i') \setminus \{u''\}}_{2\text{-hop}} \Big\} \Big), \underbrace{\forall i' \in \mathcal{N}(u)}_{1\text{-hop}} \Big\} \Big) \end{aligned}$$

OBSERVATION: Message-passing works on **same-** and **different-**type node explorations, where the **former** occur for **even** number of hops, the **latter** occur for **odd** number of hops.

Experimental settings

Datasets

Dataset	# Users	# Items	# Interactions	Sparsity
Movielens-1M*	5,915	2,753	570,622	0.9650
Amazon Digital Music*	8,328	6,275	99,400	0.9981
Epinions*	14,341	13,145	269,170	0.9986

* Datasets have been pre-processed through score binarization (scores > 3 are considered as positive interactions) and filtered with the *p*-core strategy.

Graph baselines

Explicit message-passing

- Neural graph collaborative filtering (NGCF) [Wang et al., SIGIR 2019]
- Light graph convolutional network (LightGCN) [He et al., SIGIR 2020]
- Disentangled graph collaborative filtering (DGCF) [Wang et al., SIGIR 2020]
- Linear residual graph convolutional collaborative filtering (LR-GCCF) [Chen et al., AAAI 2020]

Implicit message-passing

- Ultra simplification of graph convolutional networks (UltraGCN) [Mao et al., CIKM 2021]
- Graph filter based collaborative filtering (GFCF) [Shen et al., CIKM 2021]

Evaluation Metrics

Accuracy

- Recall@K
- nDCG@K

Novelty

- EPC@K (expected number of recommended unknown items which are also relevant)
- EFD@K (expected number of recommended known items which are also relevant)

Diversity (how unequally a recommender shows different items to users)

- ∘ Gini@K
- SE@K

Results and Discussion

(Amazon Digital Music)

RQ1: Overall recommendation performance

Models	Accuracy		Novelty		Diversity				
	Recall	nDCG	EPC	EFD	Gini	SE			
Explicit message-passing									
NGCF	0.1127	0.0606	0.0109	0.1270	0.4130	11.6953			
LightGCN	0.1189	0.0628	0.0113	0.1310	0.3148	11.2940			
DGCF	0.1264	0.0674	0.0123	0.1400	0.2483	10.8904			
LR-GCCF	0.1246	0.0664	0.0119	0.1388	0.4037	11.6542			
Implicit message-passing									
UltraGCN	0.1256	0.0675	0.0123	0.1382	0.1737	10.0458			
GFCF	0.1287	0.0744	0.0137	0.1544	0.2392	10.4923			

Observation 1: While the **accuracy/novelty** trade-off does **not depend** on the explicit/implicit **message-passing**, the **accuracy/diversity** trade-off is preserved only when **explicitly propagating messages**, at the expense of (**limited**) recommendation **accuracy drops**.

RQ2: A finer trade-off evaluation

Observation 2: To confirm observation 1, **explicit message propagation** (even at 1 hop) can reach a **better accuracy/diversity** trade-off than **implicit** propagation; then, **same-**type node explorations may lead to **improved** accuracy/novelty and accuracy/diversity trade-offs

Conclusion and Future Work

Conclusion

- Accuracy-novelty-diversity trade-off in graph collaborative filtering for different neighborhood exploration strategies and depths
- Accuracy-diversity trade-off better reached when explicitly propagating messages
- User-user and item-item interactions may be leveraged to reach the trade-off

Future work

- Study other graph collaborative filtering approaches optimizing diversity
- Better investigate the same-type node exploration

Thank you! How to reach us out...

Our official GitHub repository:

http://github.com/sisinflab/Novelty-Diversity-Graph

Contacts:

vitowalter.anelli@poliba.it

vashar.deldjoo@poliba.it

tommaso.dinoia@poliba.it

eugenio.disciascio@poliba.it

antonio.ferrara@poliba.it

daniele.malitesta@poliba.it (PRESENTER)

<u>claudio.pomo@poliba.it</u>

