

The 45th European Conference on Information Retrieval Dublin, Ireland, 03-04-2023

ECIR 2023 - Main Conference

Auditing Consumer- and Producer-Fairness in Graph Collaborative Filtering

Vito Walter Anelli, Yashar Deldjoo, Tommaso Di Noia, <u>Daniele Malitesta</u>, Vincenzo Paparella, <u>Claudio Pomo</u>

Politecnico di Bari

Bari, Italy email: firstname.lastname@poliba.it

Introduction and Motivation

Graph collaborative filtering

In collaborative filtering (CF), graph convolutional networks (GCNs) have gained momentum thanks to their ability to **aggregate neighbor** nodes **information** into ego nodes at multiple hops (i.e., **message-passing**), thus effectively **distilling** the **collaborative signal**.

Consumer- & Producer- Fairness in RecSys

Recent works have **raised issues** regarding the **fairness** of recommender systems (e.g., **Burke R.**, **Ekstrand et al.**, **Wang et al.**).

Generally, recommendation fairness is categorized through two core aspects:

- engaged parties (i.e., consumers vs. producers)
- **type of benefit** (i.e., relevance vs. exposure)

Consumerand Producer-Fairness

Their joint evaluation, with accuracy, is rarely assessed in the literature (Naghiaei et al.).

Burke, R.. Multisided fairness for recommendation. arXiv preprint arXiv:1707.00093 (2017). Ekstrand, M. D, Das, A., Burke, R., Diaz, F. Fairness and Discrimination in Information Access Systems. arXiv preprint arXiv:2105.05779 (2021). Wang, Y., Ma, W., Zhang, M., Liu, Y., Ma, S.: A Survey on the Fairness of Recommender Systems. CoRR abs/2206.03761 (2022). Naghiaei, M., Rahmani, H.A., Deldjoo, Y.: Cpfair: Personalized consumer and producer fairness re-ranking for recommender systems. In: SIGIR, pp. 770–779, ACM (2022).

Consumer- & Producer- Fairness in Graph RecSys

While **state-of-the-art graph**-based recommendation models **have centered** on the enhancement of **accuracy** performance, **recent** approaches have designed **ad-hoc** solutions to address:

Consumer-Fairness

- Rahman, T.A., Surma, B., Backes, M., Zhang, Y.: Fairwalk: Towards fair graph embedding. IJCAI 2019.
- Fu, Z., et al.: Fairness-aware explainable recommendation over knowledge graphs. SIGIR 2020.
- Voit, M.M., Paulheim, H.: Bias in knowledge graphs an empirical study with movie recommendation and different language editions of dbpedia. LDK, OASIcs 2021.
- Wu, L., Chen, L., Shao, P., Hong, R., Wang, X., Wang, M.: Learning fair representations for recommendation: A graph-based perspective. WWW 2021.
- Li, C., Hsu, C., Zhang, Y.: Fairsr: Fairness-aware sequential recommendation through multi-task learning with preference graph embeddings. TIST 2022.
- Wang, N., Lin, L., Li, J., Wang, H.: Unbiased graph embedding with biased graph observations. WWW 2022.

Producer-Fairness

- Mansoury, M., Abdollahpouri, H., Pechenizkiy, M., Mobasher, B., Burke, R.: Fairmatch: A graph-based approach for improving aggregate diversity in recommender systems. UMAP 2020.
- Sun, J., et al.: A framework for recommending accurate and diverse items using bayesian graph convolutional neural networks. KDD 2020.
- Zheng, Y., Gao, C., Chen, L., Jin, D., Li, Y.: DGCN: diversified recommendation with graph convolutional networks. WWW 2021.
- Boltsis, G., Pitoura, E.: Bias disparity in graph-based collaborative filtering recommenders. SAC 2022.
- Zhao, M., et al.: Investigating accuracy-novelty performance for graph-based collaborative filtering. SIGIR 2022.
- Mansoury, M., Abdollahpouri, H., Pechenizkiy, M., Mobasher, B., Burke, R.: A graph-based approach for mitigating multi-sided exposure bias in recommender systems. TIS 2022.

ECIR 2023

Motivating Example

We seek to investigate how **state-of-the-art** graph-based models for recommendation perform on **three objectives**:

- Accuracy \rightarrow Overall Accuracy (O-Acc)
- Consumer-Fairness \rightarrow User Fairness (U-Fair)
- Producer-Fairness \rightarrow Item Exposure (I-Exp)

Tested **state-of-the-art** graph-based baselines + classical collaborative filtering methods:

- > LightGCN
- ➢ DGCF
- ➢ LR-GCCF
- ➢ GF-CF
- > BPRMF
- ➢ RP^3Beta

Preliminary results suggest that:

- Graph-based models perform better on O-Acc.
- Traditional collaborative filtering models perform better on I-Exp.
- > No clear trend on U-Fair.
- > There exists a **trade-off** among the **three objectives**.

Research Questions and Contributions

RQ1) "Can we explain the variations observed when testing several graph models on overall accuracy, item exposure, and user fairness separately?"

- We propose a formal taxonomy of graph collaborative filtering models with an extended set of models (i.e., eight) which encompasses two main strategies (i.e., nodes representation, neighborhood exploration).
- > We extend the previous experimental settings to provide a more nuanced view of the outlined findings.

RQ2) "How and why **nodes representation** and **neighborhood exploration** algorithms can strike a **trade-off** between **overall accuracy**, **item exposure**, and **user fairness**?"

We use the concept of Pareto optimality to assess the different influence of each taxonomy dimension in a two-objective scenario (O-Acc vs. I-Exp, O-Acc vs. U-Fair, I-Exp vs. U-Fair).

A Formal Taxonomy of Graph Collaborative Filtering

Taxonomy Dimensions

Models	Nodes representation				Neighborhood exploration			
	Latent representation		Weighting		Explored nodes		Message passing	
	low	high	weighted	unweighted	same	different	implicit	explicit
GCN-CF		1		1	1			1
GAT-CF		1	1		1			1
NGCF	1			1		1		1
LightGCN	1			1		1		1
DGCF	1		1			1		1
LR-GCCF	1			1	1	1		1
UltraGCN	1				1	1	1	
GFCF						1	1	

Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (Poster), OpenReview.net (2017).

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Li`o, P., Bengio, Y.: Graph attention networks. In: ICLR (Poster), OpenReview.net (2018).

Wang, X., He, X., Wang, M., Feng, F., Chua, T.: Neural graph collaborative filtering. In: SIGIR, pp. 165–174, ACM (2019).

He, X., Deng, K.,Wang, X., Li, Y., Zhang, Y.,Wang, M.: Lightgcn: Simplifying and powering graph convolution network for recommendation. In: SIGIR, pp. 639–648, ACM (2020).

Wang, X., Jin, H., Zhang, A., He, X., Xu, T., Chua, T.: Disentangled graph collaborative filtering. In: SIGIR, pp. 1001–1010, ACM (2020).

Chen, L., Wu, L., Hong, R., Zhang, K., Wang, M.: Revisiting graph based collaborative filtering: A linear residual graph convolutional network approach. In: AAAI, pp. 27–34, AAAI Press (2020).

Mao, K., Zhu, J., Xiao, X., Lu, B., Wang, Z., He, X.: **Ultragcn: Ultra simplification of graph convolutional networks for recommendation.** In: CIKM, pp. 1253–1262, ACM (2021).

Shen, Y., et al.: How powerful is graph convolution for recommendation? In: CIKM, pp. 1619–1629, ACM (2021).

(Extended) Experimental Settings

Graph-based Baselines & Datasets

We extend the set of graph-based models to the eight approaches used in our taxonomy:

- ➢ GCN-CF*
- ➢ GAT-CF*
- > NGCF
- ➢ LightGCN
- > DGCF
- LR-GCCF
- UltraGCN
- ≻ GFCF

Politecnico

Datasets**	Users	Items	Interactions
Baby***	5,842	7,925	35,475
Boys & Girls***	3,042	12,912	35,762
Men***	3,909	27,656	51,519

Trained through grid-search on 48 unique hyper-parameter settings.

Splitting: 70/10/20 for train/validation/test.

Batch size: 256, number of epochs: 400 (these parameters are shared among all models).

^{*} The postfix -CF indicates we re-adopt the original implementation to the task of personalized recommendation.

^{**} Taken from the Amazon dataset (available at this link: https://cseweb.ucsd.edu/~jmcauley/datasets.html#amazon_reviews).

^{***} We randomly sample 60k interactions and drop users/items with less than 5 interactions.

Evaluation Metrics

	Metrics	Formulation	Reference
Overall Accuracy	Recall †	$\frac{ Rel_u \cap Rec_u }{Rel_u}$	_
	nDCG ↑	$\frac{\sum_{u \in u^{e} NDCG_{u} \circledast K}}{ u^{e} }$	_
ltem Exposure	EFD †	$C\sum_{i_k \in R} disc(k)p(rel \mid i_k, u)(-\log_2 p(i \mid seen, \theta))$	Vargas and Castells
	Gini Index ↑	$\frac{1}{n-1} \sum_{j=1}^{n} (2j-n-1)p(i_j)$	Shani et al.
	APLT 🕇	$\frac{1}{ U_i } \sum_{u \in U_i} \frac{ \{i, i \in (L(u) \cap \sim \Phi)\} }{ L(u) }$	Abdollahpouri et al.
User Fairness	UMADrank \downarrow	$avg_{i,j}(MAD(R^{(i)}, R^{(j)}))$	Deldjoo et al.
	UMADrat ↓	$avg_{i,j}(MAD(R^{(i)}, R^{(j)}))$	Deldjoo et al.

Vargas, S., Castells, P.: Rank and relevance in novelty and diversity metrics for recommender systems. In: RecSys, pp. 109–116, ACM (2011).

Shani, G., Gunawardana, A.: **Evaluating Recommendation Systems.** In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 257–297. Springer, Boston, MA (2011).

Abdollahpouri, H., Burke, R., Mobasher, B.: **Controlling popularity bias in learning-to-rank recommendation.** In: RecSys, pp. 42–46, ACM (2017).

Deldjoo, Y., Anelli, V.W., Zamani, H., Bellogin, A., Di Noia, T.: A flexible framework for evaluating user and item fairness in recommender systems. User Model. User Adapt. Interact. 31(3), 457–511 (2021).

Results and Discussion

RQ1. Taxonomy-Aware Evaluation

- Of all taxonomy **sub-dimensions** (i.e., message-passing, explored nodes, weighting, and latent representations), we specifically **focus** on **message-passing** and **weighting** as representative of **neighborhood exploration** and **node representation**.
- The results refer to the Amazon Men dataset, for top-20 recommendation lists.
- Best values for each metric is in **bold**.
- Message-Passing:
 - **implicit** (i.e., GCN-CF, GAT-CF, NGCF, LightGCN, DGCF, LR-GCCF).
 - **explicit** (i.e., UltraGCN, GFCF).
- Weighting:
 - weighted (i.e., GAT-CF, DGCF).
 - **unweighted** (i.e., GCN-CF, NGCF, LightGCN, LR-GCCF).

RQ1.1 Message-Passing

Dimensions	Values	Overall accuracy		Item exposure			User fairness	
		$Recall \uparrow$	$nDCG^{\uparrow}$	$EFD\uparrow$	$Gini\uparrow$	$APLT\uparrow$	$rank \downarrow$	$rat \downarrow$
Message passing	implicit	0.1222 (GFCF)	0.0911 (GFCF)	0.2615 (GFCF)	0.2871 (UltraGCN)	0.1808 (UltraGCN)	0.0123 (UltraGCN)	0.0022 (UltraGCN)
	explicit	0.1223 (LR-GCCF)	0.0884 (LR-GCCF)	0.2536 (LR-GCCF)	0.5090 (LR-GCCF)	0.3823 (GAT-CF)	0.0002 (DGCF)	0.0169 (LightGCN)

- Both implicit and explicit have the same number of top-performing models.
- Explicit methods outperform explicit ones on item exposure (e.g., the absence of message-passing prevents users from exploring vast item segments).
- No obvious reason to favour implicit or explicit models on accuracy and user fairness.

RQ1.2 Weighting

Dimensions	Values	Overall accuracy		Item exposure			User fairness	
		$Recall \uparrow$	$nDCG\uparrow$	$EFD\uparrow$	$Gini\uparrow$	$APLT\uparrow$	$rank \downarrow$	$rat \downarrow$
Weighting	weighted	0.1210 (DGCF)	0.0857 (DGCF)	0.2428 (DGCF)	0.3240 (DGCF)	0.3823 (GAT-CF)	0.0002 (DGCF)	0.0301 (DGCF)
	unweighted	0.1223 (LR-GCCF)	0.0884 (LR-GCCF)	0.2536 (LR-GCCF)	0.5090 (LR-GCCF)	0.3438 (LR-GCCF)	0.0101 (GCN-CF)	0.0169 (LightGCN)

- Almost all **unweighted** provide better **performance**.
- Only deviation is **GAT-CF** on **APLT** (i.e., recommends more items from the long-tail).
- This happens since **weighted** techniques explore **further neighborhoods** of the ego node (see again GAT-CF on same-2), thus matching niche products.
- **EFD** and **Gini** do **not** follow the **same behaviour**, but they represent **other viewpoints** of item exposure.

RQ2. Trade-Off Analysis

- Through **Pearson** correlation, we observe that **nDCG/APLT**, and **nDCG/UMADrank** are **negatively correlated**.
- A trade-off for these metrics pairs might be necessary and desirable.
- We also seek to investigate the **APLT/UMADrank** trade-off.
- To conduct the study, we select the **message-passing** and **weighting** architectural choices, having the following categories:
 - implicit message-passing,
 - explicit + weighted,
 - explicit + unweighted.
- We select the **Pareto** optimal solutions (among the 48 explored configurations) laying on the Pareto **frontier** (**Paparella V.**).

Paparella, V.: Pursuing optimal trade-off solutions in multi-objective recommender systems. In: RecSys, pp. 727–729, ACM (2022)

RQ2.1 Accuracy/Item Exposure

- Explicit/weighted maximize either nDCG or APLT.
- Explicit/unweighted show a balanced trade-off.
- LR-GCCF's frontier dominates over the other explicit/unweighted ones.
- Implicit models increase accuracy at the expense of item exposure.

RQ2.2 Item Exposure/User Fairness

- **Two** groups: **poor** item exposure vs. **acceptable** item **exposure**.
- A subset of models belonging to explicit/unweighted recommend niche products and provide acceptable accuracy.
- **GAT-CF** is near the **utopia** point, but it **varies** quite a lot on the **accuracy**.

Conclusion and Future Work

Conclusion

- We assess the performance of graph-based recommendation models on Consumerand Producer-Fairness measures.
- We recognize a **taxonomy** of graph-based approaches based upon **node representation** and **neighborhood exploration** strategies.
- We study accuracy vs. CP-Fairness separately and simultaneously.
- **Concerns** about the adoption of **recent** (i.e., **implicit**) approaches.

Future Work

- Analyze other **datasets** and **algorithms**.
- Propose **novel** graph-based **approaches** balancing **accuracy** and **CP-fairness**.

Thank you! Any questions?

Our official GitHub repository:

https://github.com/sisinflab/ECIR2023-Graph-CF

Contacts:

vitowalter.anelli@poliba.it

yashar.deldjoo@poliba.it

tommaso.dinoia@poliba.it

daniele.malitesta@poliba.it (PRESENTER)

vincenzo.paparella@poliba.it

claudio.pomo@poliba.it

