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ABSTRACT

The success of graph neural network-based models (GNNs) has sig-
nificantly advanced recommender systems by effectively modeling
users and items as a bipartite, undirected graph. However, many
original graph-based works often adopt results from baseline papers
without verifying their validity for the specific configuration under
analysis. Our work addresses this issue by focusing on the repli-
cability of results. We present a code that successfully replicates
results from six popular and recent graph recommendation models
(NGCF, DGCF, LightGCN, SGL, UltraGCN, and GFCF) on three
common benchmark datasets (Gowalla, Yelp 2018, and Amazon
Book). Additionally, we compare these graph models with tradi-
tional collaborative filtering models that historically performed well
in offline evaluations. Furthermore, we extend our study to two new
datasets (Allrecipes and BookCrossing) that lack established setups
in existing literature. As the performance on these datasets differs
from the previous benchmarks, we analyze the impact of specific
dataset characteristics on recommendation accuracy. By investi-
gating the information flow from users’ neighborhoods, we aim to
identify which models are influenced by intrinsic features in the
dataset structure. The code to reproduce our experiments is avail-
able at: https://github.com/sisinflab/Graph-RSs-Reproducibility.
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1 INTRODUCTION AND RELATED WORK

The world of recommender systems (RSs) is experiencing a revo-
lutionary shift, thanks to the emergence of graph neural network-
based models [9, 26, 58] (GNNs). These groundbreaking models are
designed to represent users and items as a bipartite, undirected
graph, unlocking a whole new level of high-order relationships
that were previously almost unattainable. Not only they do achieve
better accuracy than their predecessors, but they are also setting a
new standard for modern recommender systems [20, 28, 47, 79]. In
recent years, great effort has been devoted in creating GNN-based
models that address the critical issues of existing models, such as the
over-smoothing phenomenon [12] and scalability issues [87]. These
cutting-edge models are taking the world of recommender systems
by storm and ushering in a new era of accuracy [41, 47, 51, 59, 81].
Over the past ten years, the application of neural techniques rooted
in graph representation learning, such as graph convolutional net-
works [35] (GCNs), has introduced a fresh perspective on traditional
collaborative filtering (CF) approaches. Rather than relying solely
on user-item interactions for optimization [29, 36, 55], GCN-based
methods enable the extraction of both short- and long-distance
user preferences toward items [71]. By incorporating multi-hop
relationships into the embeddings of users and items, these learned
profiles yield more precise recommendations, as evidenced in the
literature [28, 47]. Nevertheless, more researchers obtained different
accuracy outcomes in independent experiments and began question-
ing the graph collaborative filtering (graph CF) prominence [96].
The original GCN layer employs message-passing techniques
to refine the node representations of users and items through
the iterative aggregation of their respective multi-hop neighbor
nodes. While early attempts focused on simple aggregation meth-
ods [68, 87], recent solutions have advanced the field by exploring
the inter-dependencies between nodes and their neighbors [71], de-
signing simplified versions of the graph convolutional layer [14, 28]
and learning multiple nodes’ views [78, 89] augmented via self-
supervised and contrastive learning to improve model accuracy.
Moreover, current trends aim to simplify message-passing formula-
tions [47, 51, 59], explore other spaces for graph-based recommen-
dation tasks [59, 62, 92], and use hypergraphs to capture complex
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user-item dependencies [76, 82]. To filter out noisy neighbors and
uncover hidden preference patterns, a complementary research
field emerged that focuses on learning importance weights through
attention mechanisms, such as those employed in the graph at-
tention network [69] (GAT). While some models aim to recognize
meaningful user-item interactions at a higher level [67, 70], others
disentangle relations on a finer-grained scale [73, 92]. The recent ad-
vancements in GCN-based techniques have opened up new avenues
for more accurate and effective recommendation systems.

Reproducibility is the cutting-edge research task in which re-
searchers replicate experimental results using the same data and
methods [7, 15, 16, 65]. In the case of graph CF, several factors
contribute to the lack of reproducibility. Firstly, many graph CF
studies copy previous results found in the literature for the same
datasets, which makes it challenging to compare and reproduce
results across different studies. Secondly, such studies do not pro-
vide the implementation of the adopted baselines, which makes it
difficult to assess the effectiveness of different models. Furthermore,
graph CF studies frequently do not provide complete information
since they do not always share the experimental setups, such as
hyper-parameter settings and training procedures. This lack of
transparency makes it challenging to reproduce results and verify
the validity of the findings. The lack of reproducibility in graph
CF is a significant issue because it undermines the research’s cred-
ibility and hinders the field’s progress. To address this problem,
researchers should strive to provide more detailed descriptions of
their experimental setups and make their code and datasets pub-
licly available. Additionally, the research community should work
together to establish standard evaluation metrics and experimen-
tal protocols to promote reproducibility and facilitate comparison
across different studies.

To this aim, this work reports on a notable reproducibility ef-
fort to re-implement and replicate the results of six state-of-the-art
(both well-established and recent) papers on graph collaborative
filtering, namely, NGCF [71], DGCF [73], LightGCN [28], SGL [78],
UltraGCN [47], and GFCF [59]. In particular, we provide an in-
depth experimental analysis of the papers, conducting the experi-
ments from scratch on the three datasets adopted in the original
papers: Gowalla [37], Yelp 2018 [28], and Amazon Book [27]. No-
tably, the investigation extends the previous works by incorporating
state-of-the-art classical collaborative filtering baselines such as
UserkNN [56], ItemkNN [57], RP38 [49], and EASER [61] to cor-
rectly position the graph CF methods in the recommender systems
state-of-the-art.

The study’s findings reveal that RP38 ranks as the second-best
method with the Yelp 2018 dataset, indicating that the original pa-
pers would have needed a more comprehensive evaluation. To this
end, the evaluation benchmark incorporates two additional datasets,
Allrecipes [21] and BookCrossing [97], which are common in the
recommendation literature but uncommon in the graph CF-specific
literature. However, surprisingly, the rankings significantly differ
on the Allrecipes dataset, and the mathematical formulation of the
graph CF methods is not sufficient to account for these outcomes.
This observation leads to further investigation to comprehend the
experimental results. Examining the dataset topological character-
istics shows that the overall number of users and items and the
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average user and item degree vary from dataset to dataset. This
observation may indicate the amount of information transmitted
from node to node in the computational graph. According to the
mathematical background, the analysis of the results is then three-
fold, focusing on the impact of (i) the coldness/warmness of a user,
(ii) the popularity of the enjoyed items, and (iii) the size of the user
neighborhood and the coldness/warmness of the neighbors. The
users are partitioned in quartiles accordingly, and the experiments
are re-evaluated to obtain more fine-grained results that motivate
the outcomes for all the considered datasets. Overall, the study aims
to comprehensively answer several research questions, including:

RQ1. Is the state-of-the-art (i.e., the six most important papers)
of graph collaborative filtering (graph CF) replicable?

RQ2. How does the state-of-art of graph CF position with re-
spect to classic CF state-of-the-art?

RQ3. How does the state-of-art of graph CF perform on datasets
from different domains and with different topological as-
pects, not commonly adopted for graph CF recommenda-
tion?

RQ4. What information (or lack of it) impacts the performance
of the graph CF methods across the various datasets?

The following introduces the background and the experiments
to answer the outlined research questions. First, in Section 2, we
present the background technologies and the reproducibility details
to conduct our study. Then, in Section 3, we report the reproducibil-
ity results, whose insights are complemented by adding novel classic
CF baselines (i.e., Section 4). Furthermore, an investigation upon
graph topology sheds light on the discrepancies of the graph CF
approaches on two introduced datasets (i.e., Section 5). By reinter-
preting the concept of users’ node degree as information flow from
the multi-hop neighborhoods to the user, we unveil the behavior
of the graph and classic CF. Finally, Section 6 wraps up the main
take-home messages and paves the way to novel directions for fu-
ture work. Codes and datasets to reproduce our paper are available
here: https://github.com/sisinflab/Graph-RSs-Reproducibility.

2 BACKGROUND AND REPRODUCIBILITY
ANALYSIS

The current section is aimed to provide the background about
selected state-of-the-art methodologies in graph CF and their re-
producibility details as presented in the original papers. First, the
main aspects about graph-based models are introduced to conduct a
chronological analysis of the strategies behind each algorithm (Sec-
tion 2.1). Then, we assess the experimental settings as reported in
the original works by focusing on the chosen baselines (Section 2.2),
the datasets involved (Section 2.3), and the training-testing protocol
adopted in each case (Section 2.4).

2.1 Graph collaborative filtering

In graph CF, users, items, and their interconnections are viewed
as a bipartite and undirected graph. Let U and I be the sets of
users and items in the recommendation system, respectively. Then,
let R € RIUIXIZI be the user-item interaction matrix where, in
an implicit feedback scenario, Ry; = 1 if user u € U interacted
with item i € I, 0 otherwise. We build the adjacency matrix
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A e RUUHIDX(UHTD jndicating the bi-directional connec-
tions linking users and items in R:

A= [ROT Ig] . )

We use the set of users and items, along with the adjacency matrix,
to formally define the user-item bipartite and undirected graph
G = {U U I,A}. By associating users’ and items’ nodes to em-
beddings, the vast majority of approaches iteratively update their
representations at different hop distances through the message-
passing schema [9, 23].

For this work, we select and reproduce the results for six widely-
recognized state-of-the-art approaches in graph CF, namely, NGCF
[71], DGCF [73], LightGCN [28], SGL [78], UltraGCN [47], and
GFCF [59] (refer to Section 3). This selection is motivated by two
aspects: (i) such models are adopted as baselines in recent works
from top-tier venues (see the second column in Table 1); (ii) their
strategies cover a wide spectrum of techniques in graph CF. To pro-
vide a chronological overview of such techniques, in the following,
we report their main aspects:

o NGCF. Neural graph collaborative filtering [71] (NGCF) is among
the pioneer approaches in graph CF. Its message-passing schema
works by aggregating the neighborhood information and the
inter-dependencies among the ego and the neighborhood nodes
(note that a normalized Laplacian adjacency matrix is used during
the message-passing).

e DGCF. Disentangled graph collaborative filtering [73] (DGCF)
assumes that user-item interactions can be disentangled into
independent intents, where each stands for a specific aspect
describing the user’s preference towards the item. The model
learns a set of weighted adjacency matrices refining the user-item
importance related to a specific intent.

e LightGCN. Light graph convolutional network [28] (LightGCN)
suggests that a more light-weight formulation of the graph con-
volutional layer proposed by Kipf and Welling [35] can lead to
superior accuracy performance in the recommendation scenario.
Specifically, the architecture removes feature transformations
and non-linearities.

o SGL. Self-supervised graph learning [78] (SGL) is among the first
attempts to bring the lesson-learned from self-supervised [31]
and contrastive [34] learning to graph CF. Built upon a Light GCN-
based convolutional layer, the model learns different views of
nodes by performing node/edge dropout and random walk oper-
ations on the graph topology. A self-supervised contrastive loss
component is added to encourage the consistency among differ-
ent views of the same node and the divergence among different
nodes.

e UltraGCN. Ultra simplification of graph convolutional network
[47] (UltraGCN) addresses some crucial issues in graph CF. Specif-
ically, the authors propose a novel message-passing schema
that mathematically approximates the infinite-layer propagation
through a single (simplified) node update iteration. The adjacency
matrix is normalized through a modified Laplacian formulation
that accounts for the asymmetric weighting of connected nodes
in user-user and item-item connections. Moreover, two loss com-
ponents are introduced to tackle the over-smoothing effect and
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learn from the usually-unexplored type of node relationships
such as item-item.

o GFCF. Graph filter-based collaborative filtering [59] (GFCF) ques-
tions the role of graph convolutional network into recommenda-
tion by leveraging graph signal processing theory. By showing
that several existing approaches in CF may fall into one unified
framework based upon graph convolution, the authors eventu-
ally propose a closed-form algorithm that proves to be a strong
baseline against other trainable and computationally-expensive
(graph-based) approaches in CF. Thus, the method represents the
only exception to the message-passing models presented above.

2.2 Analysis on reported baselines

Table 1 reports on the baselines each graph-based approach was
tested against in the original paper. By categorizing them into clas-
sic and graph CF we first observe that, with the only exception
of UltraGCN, all graph-based recommendation systems are gener-
ally compared only against 1-2 classical CF solutions (MF [29, 55]-
and/or VAE [38, 44]-based approaches in most cases). However, the
recent literature [2, 3, 15, 16, 96] has raised several concerns about
usually-untested strong CF baselines, such as nearest-neighborhood
approaches (e.g., UserkNN [56] and ItemkNN [57]), random-walk
techniques (e.g., RP38 [49]), and other autoencoder-based solu-
tions (e.g., EASER [61]). Differently from the classical CF base-
lines, we notice that most of the works compare their proposed
approaches against a wide (and shared) range of graph CF solu-
tions. This is easily explainable given the conceptual and logical
similarities among the graph CF baselines and the proposed ap-
proaches. Moreover, besides a limited subset of graph CF baselines
(i.e., HOP-Rec [83] and GRMF [53]), the vast majority of tested
graph algorithms [14, 43, 64, 68, 87] are based upon the graph con-
volutional network architecture. Interestingly, we observe that only
a subgroup of our selected six graph CF approaches (up to a max-
imum of three approaches if we consider UltraGCN) is generally
compared against the proposed approach. While we could justify
this point with chronological motivations (e.g., DGCF could have
not been tested on SGL, UltraGCN, and GFCF), we deem this to be
an important lack in the existing literature.

Under the above considerations, and differently from the previ-
ous works, we compare the accuracy performance of the selected
six graph CF approaches against strong CF techniques (UserkNN,
ItemkNN, RP38 and EASER), while providing a complete evaluation
setting which involves all the selected graph methods, where they
are put against one another (refer to Section 4). To our knowledge,
this work is one of the first attempts [96] to fill this gap.

2.3 Analysis on reported datasets

Table 2 displays the datasets adopted to train and test the reviewed
graph-based recommender systems, as reported in the original
papers. Notably, we recognize a total of seven recommendation
datasets spanning different domains such as social networks (i.e.,
Gowalla), points-of-interest (i.e., Yelp 2018), e-commerce (i.e., the
Amazon product categories and Alibaba-iFashion), and movies (i.e.,
Movielens 1M). It is worth pointing out that when we set the ‘v for
the same dataset on different models, we are stating that the authors
from the original works used the exact same dataset setting, that is,
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Table 1: Analysis of baselines used in each of the selected graph-based models, categorized into classic and graph CF. A colored
tick ‘/’ denotes when one of the baselines is also among the selected set of graph-based approaches for our study.

Models

Families Baselines NGCF [71] DGCF [73]

LightGCN [28]

SGL [78] UltraGCN [47] GFCF [59]

Used as graph CF baseline in (2021 — present)

[10, 13, 32, 62, 77, 84]  [19, 39, 46, 74, 75, 92]  [40, 54, 78, 82, 88, 89]  [22, 46, 77, 82, 85, 93]  [17, 24, 42, 48, 95, 96]  [4, 5, 41, 50, 80, 96]

MF-BPR [55] v v

v

NeuMF [29] v

CMN [18] v

MacridVAE [44] v

Mult-VAE [38]

Classic CF
DNN+SSL [86]

ENMEF [11]

CML [30]

DeepWalk [52]

LINE [66]

Node2Vec [25]

NBPO [91]

STSISNININS

HOP-Rec [83] v

AN
AN

GC-MC [68]

PinSage [87] v

NGCF [71]

DisenGCN [43] 4

Graph cF GRMF [53]

GRMF-Norm [28]

NIA-GCN [64]

LightGCN [28]

DGCF

LR-GCCF [14]

SCF [94]

BGCF [63]

LCFN [90]

SIS S

the original user-item interaction data and splitting/filtering strate-
gies. A deeper analysis shows that there exists a subset of three
datasets (i.e., Gowalla [37], Yelp 2018 [28], and Amazon Book [27])
which is utilized in the majority of graph CF works. For the sake
of reproducibility, we replicate the original results calculated on
such datasets for the six graph CF approaches (although the SGL
paper does not provide results on Gowalla). Given the limited set
of shared datasets among all the approaches, we include novel,
never-investigated datasets to assess if their recommendation accu-
racy remains consistent on other domains and/or topologies (refer
to Section 5).

2.4 Analysis on experimental comparison

As a final analyzed dimension, we discuss the protocol for the ex-
perimental comparison between the baselines and the proposed
approach in each selected work. Being the pioneer model in the
domain, the authors from NGCF train all proposed baselines from
scratch. In the DGCF paper, the authors directly report the results

of some baselines which are shared with NGCF and train the other
baselines from scratch. In a similar manner, the authors by Light-
GCN, SGL, and UltraGCN copy the result values from the original
papers, while the remaining models are trained from scratch. Fi-
nally, the authors from GFCF reproduce the results from Light GCN
as the baselines are exactly the same.

With reference to the copy-paste of the baseline results, authors
often justify this practice by claiming that the adopted experimental
settings (in terms of dataset splitting/filtering) are equal to the
ones adopted by their (graph) CF baselines. Indeed, it is also worth
mentioning that authors are in some cases shared across the works
under investigation.

To remove all doubts, and differently from the mentioned works,
we re-implement all algorithms by carefully following their original
codes, and train/evaluate them through Elliot [1, 45]. Our goal is to
provide a fair and repeatable experimental environment for the se-
lected graph CF approaches, by using the hyper-parameter settings
as indicated in each paper and/or shared online code to assess to
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Table 2: Analysis of the datasets adopted in each graph-based approach.

Models Gowalla  Yelp 2018  Amazon Book  Alibaba-iFashion = Movielens IM  Amazon Electronics =~ Amazon CDs
NGCF v v v

DGCF v v v

LightGCN v 4 v

SGL 4 4

UltraGCN v 4 v v v v
GFCF v 4 v

what extent we can reproduce the original results. The reader may
refer to Section 3.1 for a whole description of our settings.

3 REPLICATION OF PRIOR RESULTS (RQ1)

This section focuses on how the replication of the experiments
from the six state-of-the-art papers on graph CF stated before has
been set up. It starts by defining the evaluation protocol applied
to compare these methods in their respective works (Section 3.1).
After that, we present our replication results (Section 3.2).

3.1 Settings

The experimental setup adopted in the first part of this study is
designed primarily to replicate the results of the models included
in this analysis [28, 31, 43, 47, 59, 71]. As mentioned earlier, we use
the three most common datasets in this scenario to show the results
of our replicability study. Specifically, we use Gowalla, Yelp 2018,
and Amazon Book as provided in the public repositories of NGCF!
and LightGCNZ. All the proposed models (except SGL) use the same
datasets with the same filtering/splitting. The authors state that
they adopt a random split based on the 80/20 hold-out (i.e., for
each user, 80% of the interactions is used to create the training
set, while the remaining 20% constitutes the test set). Thus, each
user-item interaction is treated as positive; all others are considered
unfavorable. In addition, the authors leave 10% of the training as
a validation set for tuning the hyper-parameters. However, this
portion of the dataset is not indicated in the papers’ extra material.

The adopted evaluation protocol is shared across all the analyzed
papers. The approach is known as all-unrated-item [60]; for each
user, we retain all candidate items with whom she does not interact
with in the training set. To measure the quality of recommenda-
tions, we use the Recall and the nDCG on the top-20 recommenda-
tion lists for each user. Each work performs its own tuning of the
hyper-parameters (the Recall@20 is used as validation metric), by
reporting on the search hyper-parameter spaces. Moreover, the best
configurations on each dataset are usually provided in the respec-
tive papers and/or repositories. Thus, we set the hyper-parameters
on each model-dataset as the best ones declared by the authors.
The configuration files to run such experiments is fully available at
our GitHub repository: https://split.to/Graph-Reproducibility. The
careful reader would notice that the results reported in Table 3 for
NGCF (see the ‘Original’ column) differ from those shown in the
in-proceedings version [71]. The reason is that the authors modified
and recalculated the results obtained for the model and baselines

Uhttps://github.com/xiangwang1223/neural_graph_collaborative_filtering.
Zhttps://github.com/kuandeng/LightGCN.

due to errors in the pre-processing of the Yelp 2018 dataset and in
the calculation of the nDCG. Thus, for the sake of fair reproducibil-
ity, and only in this case, we consider the results reported in the
arXiv (most updated) version of the paper [72].

3.2 Results

Table 3 compares the results reported by the six papers focused on
our study with those obtained in our implementation (using the
tuned parameters specified in each work, as explained before). The
new experiments closely approximate the original ones, with the
most significant performance shift being in the 10~ order. There
are no noticeable distinctions in metrics, dataset, or algorithm used.

More specifically, in an algorithm basis, we observe the perfor-
mance of GFCF is the best replicated one. This might be due to this
method being the only one with a closed-form algorithm, hence,
no perturbations from random initializations are expected. The
rest of the approaches evidence a similar (high) level of replication,
although the shift for NGCF and DGCF rarely achieves the 10™*
order for the two metrics in all the datasets. In any case, considering
the random initializations and stochastic learning processes [33],
our replication of these approaches could be considered a success.

No significant differences were found among the three datasets.
SGL was not originally reported for Gowalla, so it was omitted from
the table as we compared reported results with our implementations
using the same hyper-parameters.

In summary, these results confirm that, as discussed before, even
though authors of these papers re-used the performance values
from other papers just by copy-pasting them, this did not hurt
the reproducibility of these approaches. As previously stated, our
assumption for this behavior (which is not a safe practice in gen-
eral [7]) is that the experiments of the original papers were all
comparable because some authors are shared across contributions,
which should guarantee that the settings and implementations of
the algorithms are the same.

4 BENCHMARKING GRAPH CF APPROACHES
USING ALTERNATIVE BASELINES (RQ2)

In line with recent reproducibility works (such as [15]) that evi-
denced certain problems regarding the choice and optimization of
the baselines used for comparison, in this section we assess how
graph CF approaches perform relatively to classical CF baselines.
As in the previous section, we specify first how the experiments
are prepared (Section 4.1), and the corresponding results are shown
and discussed later (Section 4.2).
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Table 3: Results of our replicability study on Gowalla, Yelp 2018, and Amazon Book for the selected state-of-the-art graph-based
recommender systems. We calculate the performance shift between our conducted experiments and the original ones (as
reported in their papers). Note that models have been sorted out according to the chronological order.

Datasets Models Ours Original Performance Shift
Recall nDCG Recall nDCG Recall nDCG
NGCF 0.1556  0.1320  0.1569 0.1327 —1.3-107% -7-107%
DGCF 0.1736  0.1477  0.1794 01521 —5.8-107% —-4.4.107%
: L 10-04 _0.10-04
Gowalla ngthCN 0.1826  0.1545 0.1830  0.1554 —4-10 9-10
SGL — - - - - -
UltraGCN ~ 0.1863  0.1580  0.1862  0.1580 +1-107% 0
GFCF 0.1849  0.1518  0.1849  0.1518 0 0
NGCF 0.0556  0.0452  0.0579 00477 —2.3-10"% —-25.107%
DGCF 0.0621  0.0505 0.0640 00522 —1.9-107% —-1.7.107%
s _9. -03 _ . -03
Yelp 2018 LightGCN  0.0629  0.0516 0.0649  0.0530 2-10 o 1.4-10 o
SGL 0.0669  0.0552  0.0675  0.0555 —6-10~ -3-10~
UltraGCN ~ 0.0672  0.0553  0.0683  0.0561 —1.1-10"% -8-107%
GFCF 0.0697 0.0571 0.0697  0.0571 0 0
NGCF 0.0319 0.0246 0.0337 0.0261 -1.8-107% -15.107%
DGCF 0.0384  0.0295 0.0399 0.0308 —-1.5-10"% -13.107%
. L 10-04 L1004
Amazon Book  LENGCN  0.0419 00323 00411  0.0315 +8 1070‘1 +8 1070‘1
SGL 0.0474  0.0372  0.0478  0.0379 —4-10 -7-10
UltraGCN ~ 0.0688  0.0561  0.0681  0.0556 +7-107% +5-107%
GFCF 0.0710  0.0584 0.0710  0.0584 0 0

*Results are not provided since SGL was not originally trained and tested on Gowalla [78].

4.1 Settings

We expand our investigation by examining four classic CF models to
enhance the replicability analysis. Specifically, we select four mod-
els whose accuracy performance has rarely been compared with
the graph-based CF approaches replicated in this study. The deci-
sion to include UserkNN, ItemkNN, RP33, and EASER is purposeful.
We refer to [16] and (more recently) [2], which demonstrated the
competitiveness of these baseline models compared to more recent
approaches when a shared benchmark for comparison is employed
among all involved methodologies. Furthermore, we also consider
two unpersonalized approaches (i.e., MostPop and Random). The
two models act as benchmarks to assess the effectiveness of cus-
tomized methods compared to a user-agnostic solution.

For a fair comparison, the configuration delineated herein eluci-
dates how the four classic CF models are tuned following the exact
same training/test splitting reported in Section 3 and the same
experimental protocol. The only difference is that (for obvious rea-
sons) we need to explore the hyper-parameters of each classic CF
model introduced in the comparison. Similarly to what the authors
do in the original graph CF works, we retain the 10% of the training
to generate a validation set, but decide to explore 20 distinct configu-
rations for each model through the state-of-the-art Tree-structured
Parzen Estimator (TPE) hyper-parameter search [8]. For every
model, the final results correspond to the accuracy measure on the
test set by setting the hyper-parameter configuration providing the
best Recall@20 results on the validation set. The complete configu-
ration files to run the classic CF baselines are provided in our repos-
itory: https://github.com/sisinflab/Graph-RSs-Reproducibility.

4.2 Results

Table 4 shows the results of the graph CF models (as previously
replicated in Table 3) with the additional baselines. First, it is worth
noting that, even though none of these baselines gets the best

results in any of the three datasets considered, they achieve the
second-best performance in Yelp 2018 (refer to RP38 with nDCG).

Second, none of the models in the reference family achieve com-
petitive performance. While this is expected for the Random algo-
rithm, it is an indication that either none of these datasets evidence a
strong popularity bias or (considering the way they were processed)
such bias was removed.

Third, some of the classic CF approaches (such as RP38 and
UserkNN in Gowalla, and RP3ﬁ and EASER in Yelp 2018) demon-
strate better performance than some of the state-of-the-art graph
CF methods, in particular, they perform better than NGCF, DGCF,
and LightGCN. This result is in line with recent experimental com-
parisons [3, 6, 15] where these baselines outperform other methods
based on matrix factorization or neural networks. Moreover, to
some extent, the fact that some graph CF methods are outperformed
should not be surprising, since, as shown in Table 1, none of these
baselines were included in the original papers where the graph CF
approaches were proposed.

5 EXTENDING THE EXPERIMENTAL
COMPARISON TO NEW DATASETS (RQ3 —

RQ4)
This section aims to provide a full picture from an experimental
point of view on two new datasets: Allrecipes and BookCrossing.
First, Section 5.1 introduces the experimental settings followed
to obtain the results presented in Section 5.2. Then, Section 5.3
discusses these results in more detail, aiming to explain the insights
derived from them.

5.1 Settings

Motivated by the previous results, we further enrich our analysis by
investigating the behavior of all tested models on two datasets that
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Table 4: Graph-based CF solutions tested against unpersonal-
ized (i.e., reference) and classical CF approaches on Gowalla,
Yelp 2018, and Amazon Book. While results for the graph-
based approaches have been directly reported from our re-
producibility study (see above), classical CF recommender
systems have been fine-tuned on the two datasets to find
their best configurations. Boldface and underline refer to
best and second-to-best values, respectively.

Families Models Gowalla Yelp 2018 Amazon Book

Recall nDCG Recall nDCG Recall nDCG

MostPop 0.0416  0.0316  0.0125 0.0101  0.0051  0.0044

Reference  pondom  0.0005 00003 0.0005 00004 0.0002 0.0002

UserkNN  0.1685 0.1370  0.0630 0.0528 0.0582  0.0477

. ItemkNN  0.1409 0.1165 0.0610 0.0507 0.0634  0.0524
Classic CF 3

RP’B 01829 0.1520 0.0671 0.0559 0.0683 0.0565

EASER* 01661 0.1384 00655 0.0552 0.0710 0.0567

NGCF 0.1556 0.1320 0.0556 0.0452 0.0319 0.0246

DGCF 0.1736 0.1477 0.0621 0.0505 0.0384 0.0295

Graphcr VEMGCN 01826 01545 00629 00516 0.0419 00323

SGL - — 00669 0.0552 0.0474 0.0372

UltraGCN ~ 0.1863 0.1580 0.0672 0.0553 0.0688  0.0561

GFCF 0.1849 0.1518 0.0697 0.0571 0.0710 0.0584

*Results for EASER on Amazon Book are taken from BARS Benchmark [96].

have never been considered in any previous study involving graph-
based approaches for recommendation, namely, Allrecipes [21]
and BookCrossing [97]. Table 5 shows some statistics of these
datasets, where we purposely decide to report both the benchmark-
ing datasets for graph CF (i.e., Gowalla, Yelp 2018, and Amazon
Book) and the newly introduced ones. On the one hand, Allrecipes
exhibits quite discordant characteristics compared to the other
datasets. Although it has a comparable density, users are more nu-
merous than items, with a much lower average user and item node
degrees compared to the other standard graph CF datasets. On the
other hand, BookCrossing displays the lowest ratio between the
number of users to items across all datasets, and a much higher den-
sity than all the others. In summary, the newly introduced datasets
serve as a foundation to assess the performance in different (and
never-explored) topological settings for graph CF baselines.

To adhere to the experimental setup presented so far, we adopt
the all-unrated-item evaluation protocol, and split the two datasets
with a random hold-out solution, ensuring an 80:20 proportion.
Differently from the replicability study, we now perform a TPE-
based hyper-parameter tuning for all models, as the best hyper-
parameters for each graph-based approach is not known in ad-
vance; for this, we (again) use the 10% portion of the training set
as validation set. We run 20 different settings within the search
space provided in the original papers. The models’ best configu-
rations are selected through the Recall@20 on the validation. As
stated for previous settings, we report all configuration files to
run the experiments with the novel datasets in the GitHub here:
https://github.com/sisinflab/Graph-RSs-Reproducibility.

5.2 Results

Table 6 provides a full comparison between unpersonalized meth-
ods, classical CF approaches, and the graph CF methods under
analysis. In line with our previous section experiments, classic CF
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Table 5: Statistics calculated on the training sets of Gowalla,
Yelp 2018, Amazon Book, Allrecipes, and BookCrossing. We
indicate the number of user-item interactions through’ Edges’
while ’Avg. Deg. (U)’ and ’Avg. Deg. (I)’ refer to users’ and
items’ average node degree (i.e., average interaction number).

Statistics Gowalla Yelp 2018 Amazon Book Allrecipes BookCrossing
Users 29,858 31,668 52,643 10,084 6,754
Items 40,981 38,048 91,599 8,407 13,670
Edges 810,128 1,237,259 2,380,730 80,540 234,762
Density 0.0007 0.0010 0.0005 0.0010 0.0025
Avg. Deg. (U) 27.1327 39.0697 45.2241 7.9869 34.7590
Avg. Deg. (I) 19.7684 32.5184 25.9908 9.5801 17.1735

Table 6: Graph-based CF solutions tested against unpersonal-
ized (i.e., reference) and classical CF approaches on Allrecipes
and BookCrossing. Boldface and underline refer to best and
second-to-best values, respectively.

Families  Models Allrecipes BookCrossing
Recall nDCG Recall nDCG

Reference MostPop 0.0472 0.0242 0.0352 0.0319
Random 0.0024 0.0010 0.0013 0.0011

UserkNN 0.0339 0.0188 0.0871 0.0769

Classic CF TtemkNN 0.0326 0.0180 0.0779 0.0739
RP3/3 0.0170 0.0089 0.0941 0.0821

EASER 0.0351 0.0192 0.0925 0.0847

NGCF 0.0291 0.0144 0.0670 0.0546

DGCF 0.0448 0.0234 0.0643 0.0543

LightGCN  0.0459 0.0236 0.0803 0.0660

Graph CF o1, 00365 00192 00716  0.0600
UltraGCN  0.0475  0.0248 0.0800 0.0651

GFCF 0.0101 0.0051 0.0819 0.0712

methods (in particular, RP38 and EASER) are very competitive com-
pared to graph CF approaches, even in novel datasets like the ones
included in this analysis. More specifically, the results in BookCross-
ing are dominated by these baselines, whereas in Allrecipes, the
MostPop technique is the one that stands out, evidencing a strong
popularity bias.

These results highlight that, among the graph CF techniques,
those that maintain their performance in novel domains are Ultra-
GCN (best one in Allrecipes and third among its type) and Light-
GCN (second best in both domains). While the nature of these
two datasets is clearly different (as shown in Table 2, Allrecipes is
smaller and it contains more users than items, instead of the other
way around as in BookCrossing), the relative performance of the
best graph CF methods is competitive. However, for some of them,
the performance drop is significant, reaching an accuracy lower
than that of any other classic CF baseline.

To bring light into some of these behaviors, the next section
discusses in more detail how the ranking of the graph CF methods
changes depending on the dataset, and hypothesize which dataset
characteristics may be tied to these effects.

5.3 Discussion

To further validate and explain the reasons behind the results re-
ported in Table 6, in the following we perform a twofold analysis.
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Table 7: Graph-based recommender systems, ranked according to their Recall@20 and nDCG@20 on all the tested datasets. For
each model, we also report its relative improvement with respect to the worst-performing approach on the same dataset (in

green).

Metric Gowalla Yelp 2018 Amazon Book Allrecipes BookCrossing

1. UltraGCN (+19.73%)  GFCF (+25.36%) GFCF (+122.57%) UltraGCN (+370.30%)  GECF (+27.37%)

2. GFCF (+18.83%) UltraGCN (+20.86%) ~ UltraGCN (+115.67%)  LightGCN (+354.46%)  LightGCN (+24.88%)
Recall 3 LightGCN (+17.35%)  SGL (+20.52%) SGL (+48.59%) DGCF (+343.56%) UltraGCN (+24.42%)

4. DGCF (+11.57%) LightGCN (+13.13%)  LightGCN (+31.35%)  SGL (+261.39%) SGL (+11.35%)

5. NGCF(—) DGCF (+11.69%) DGCF (+20.38%) NGCF (+188.12%) NGCF (+4.20%)

6. SGL*(—) NGCF (—) NGCF (—) GFCF (—) DGCF (—)

1. UltraGCN (+19.70%)  GFCF (+26.33%) GFCF (+137.40%) UltraGCN (+386.27%)  GFCF (+31.12%)

2. LightGCN (+17.05%) UltraGCN (+22.35%)  UltraGCN (+128.05%)  LightGCN (+362.75%)  LightGCN (+21.55%)
opeg 3 GECE (+15.007) SGL (+22.12%) SGL (+51.22%) DGCF (+358.82%) UltraGCN (+19.89%)

4. DGCF (+11.89%) LightGCN (+14.16%)  LightGCN (+31.30%)  SGL (+276.47%) SGL (+10.50%)

5. NGCF(—) DGCF (+11.73%) DGCF (+19.92%) NGCF (+182.35%) NGCF (+0.55%)

6. SGL*(—) NGCF (—) NGCF (—) GFCF (—) DGCF (—)

“SGL is not classifiable on the Gowalla dataset as results were not calculated in the original paper [78].

First, we rank all the selected graph-based recommendation models
on all the tested datasets to assess their relative improvement across
all settings and provide another perspective on the results from Ta-
ble 6. Then, we propose a more nuanced study on the measured
accuracy performance by investigating its (possible) dependence
on the specific dataset characteristics, namely, the node degree as
viewed at multiple hops.

5.3.1 Graph-based models’ ranking. In Table 7, we rank the six
graph CF recommender systems under analysis according to the
calculated Recall@20 and nDCG@20, for both the original datasets
(i.e., Gowalla, Yelp 2018, and Amazon Book) and the novel datasets
we introduced (i.e., Allrecipes and BookCrossing). Moreover, we
also indicate the relative improvement of each model with respect
to the worst-performing algorithm on that dataset.

The trend on the three original datasets is quite steady, with
UltraGCN and GFCF being the two best-performing approaches in
almost all cases, and the remaining graph techniques ranked as in
descending chronological order (confirming the findings from the
recent literature). In terms of relative improvements, we observe
large performance differences mainly on the Amazon Book setting.

By focusing on the two additional datasets (i.e., Allrecipes and
BookCrossing), the rankings corroborate some of the previous out-
comes, but also introduce novel and unexpected considerations.
While UltraGCN seems to preserve its role of leading approach
in the two scenarios (in BookCrossing it is ranked as third but
with minimum margin to the second one), we notice how GFCF’s
performance is very fluctuating, as it even stands in the last posi-
tion on Allrecipes with large performance difference to the other
models (the same goes for DGCF). Noticeably, LightGCN gets up
to the top of the ranking in both settings, indicating that a careful
hyper-parameter tuning could be beneficial to outperform most of
the other approaches, even the ones that should surpass it accord-
ing to the literature (such as SGL). As final remarks, NGCF poor
performance is again confirmed in such different dataset settings.

5.3.2  Analysis on the node degree. As already observed in Table 5,
the average node degree of users and items represents one of the
main aspects discerning each dataset from the other ones. For this
reason, we decide to reason about its possible influence on the mod-
els’ performance. In this respect, instead of limiting our analysis to

the sole definition of node degree (i.e., number of recorded interac-
tions for each user and item), and given the ability of graph-based
approaches to distill the collaborative signal by stacking multiple
layers [71], we propose a novel investigation which reinterprets
the node degree as information flow from neighbor nodes to the
user nodes after multiple hops. Note that we only consider users
as the ending nodes of such a flow because we are interested in
assessing how the accuracy recommendation measures (which are
generally calculated user-wise) may be influenced by this aspect.

Before diving into the results and discussion, we provide some
useful intuitions and formulations which may help understand our
analysis. With reference to Figure 1, we introduce the definition of
information flow at one, two, and three hops. We decide to limit our
focus on the first three explored hops because (i) graph-based rec-
ommender systems built upon the message-passing schema usually
tend not to iterate over the third aggregation layer, and (ii) the in-
vestigation of more than three hops would not be meaningful from
a recommendation perspective. As a matter of fact, we interpret
each of the three hops as follows:

e at one hop (Figure 1a), users receive the information coming
from the items they interacted with; in other words, this is an
indication of the activeness of users on the platform;

e at two hops (Figure 1b), users receive the information of the
other users co-interacting with the same items; in other words,
this is an indication of the influence of items’ popularity on users;

e at three hops (Figure 1c), users receive the information com-
ing from the items interacted by the other users involved in
co-interactions; i.e., this is an indication of the influence of co-
interacting users’ activeness on users.

Let us formalize such definitions. The information received by
users at one, two, and three hops is calculated as:
1
1\) =Ri;,

Ty = RO(yR)1r, YY) = (RRTORIN1L, ()

where Yfl?) e RIUIXL i the vector of the information that all

users receive from the nodes in their h-hop, 1¢; € RXIUI and
17 € RIZIX1 are row and column vectors with 1 repeated |2/| and
| 7| times, respectively, while © is the Hadamard product performed
in broadcast.
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Figure 1: A toy user-item graph where the ego user node (highlighted) receives the information flow from the (a) 1-, (b) 2-, and
(c) 3-hop neighbor nodes (highlighted). Arrows’ direction is a visual representation of the information flow.

Inlight of the above, the study assesses the accuracy performance
of graph-based recommender systems on user groups considering
the information received from the one, two, and three hops neigh-
borhood. Following other analyses in the literature, we decide to
split users into quartiles according to the information values (i.e.,
T(h)). Thus, we consider four groups: (i) users whose values are
below the 25% of the distribution, (ii) users whose values are above
the 25% and below the 50% of the distribution, (iii) users whose
values are above the 50% and below the 75% of the distribution, and
(iv) users whose values are above the 75% of the distribution.

Figure 2 displays the percentage variation in accuracy perfor-
mance (measured by nDCG) across quartiles relative to the average
value reported in Table 6. The figure illustrates how the quality of
recommendation performance fluctuates amongst different clusters
of users. For example, a method indicating a 50% improvement in
the fourth quartile would suggest that users in this cluster, typically
more active (1-hop) or also interested in popular items (2-hop), re-
ceive more accurate recommendations with respect to the average
user. This observation implies that a non-discriminatory recom-
mendation system should produce no variation across quartiles,
with values overlapping the 0% dashed line. The second necessary
preliminary to understand the outcome of the experiments is the
interpretation of the quartiles for the different hops. In the 1-hop,
the fourth quartile pertains to warm users interacting most with
the platform, while the first quartile represents cold users interact-
ing less frequently. In the 2-hop, high values in the fourth quartile
indicate active users who enjoy popular items, resulting in dense
subgraphs. The first quartile, in contrast, consists of less active
users interacting with niche items in less dense subgraphs. The
3-hop, which includes user neighbors, generates the highest values
when active users interact with popular items enjoyed by warm
users (i.e., their neighbors). However, it is essential to note that the
plots offer no insight into overall accuracy (which is in Table 6).

When considering the recommendation performance according
to the corresponding cluster (depicted in Figure 2), it is crucial to
note that none of them demonstrate ideal recommendation behav-
ior. Instead, these systems tend to favor warm users or densely
interconnected subgraphs located in the fourth quartile. Despite
this trend, the 1-hop plots for graph Collaborative Filtering (CF)

and classic CF methods in Allrecipes and BookCrossing graphs
demonstrate minimal disparities between different recommenda-
tion approaches. Even though they all favor the fourth quartile over
the first one, the coldness/warmness of a user marginally impacts
how much the method is biased toward these types of users. The
lone exception to this trend is GFCF, which exhibits even greater
penalization towards the first three quartiles (varying on the three
hops from, approximately, -45% to +115%, and thus exceeding the
plots’ upper bound). As such, this system only provides satisfactory
recommendation performance for users in the fourth quartile.

Regarding the 2-hop, there are several interesting insights to be
gained. Firstly, the recommendation methods exhibit a higher over-
all slope, favoring the users who enjoyed popular items over the
cold users who enjoyed niche items. While this may seem like an
obvious observation, the plot confirms that user coldness/warmness
alone is not a sufficient indicator of high-quality recommendations.
Instead, the 2-hop reveals that combining user coldness/warmness
and item popularity is useful for identifying such users. A second
noteworthy aspect is that the Allrecipes dataset highlights three
distinct behaviors among the graph CF methods. UltraGCN, DGCF,
and LightGCN exhibit similar performance and display less dis-
criminatory behavior across quartiles. It is interesting to note that
these models also perform best overall (see Table 6). On the other
hand, SGL and NGCF show a higher slope that is comparable to
classic CF methods. Also, their corresponding performance is simi-
lar in Table 6. A third observation concerns GFCF, which performs
poorly across all quartiles except for the fourth. Its behavior is even
more accentuated than in the 1-hop analysis. Additionally, NGCF,
SGL, and GFCF are graph CF algorithms performing differently
according to user warmness and item popularity. Meanwhile, all al-
gorithms in BookCrossing, and the classic CF in Allrecipes, exhibit
the distribution over the quartiles across methods.

Finally, in the 3-hop, for the BookCrossing dataset, the informa-
tion pertaining to neighbors does not contribute significantly to
the results, as indicated by the similarity between the 2- and 3-hop
plots. Meanwhile, in Allrecipes, the best models (UltraGCN, DGCEF,
and LightGCN) exhibit more consistency in performance across all
quartiles, as demonstrated by a more even distribution of results
(less variations across the quartiles). However, this pattern is not
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—<— NGCF —— DGCF
—P— UserkNN
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Figure 2: Percentage variation between the nDCG on user quartiles and the average nDCG value across all users (indicated as

the dashed line), for each model-dataset setting. Rows refer to user quartiles when considering (a) 1-, (b) 2-, and (c) 3-hop.

evident in NGCF, SGL, and GFCF, which exhibit a more disparate
range of results across the quartiles.

6 CONCLUSION AND FUTURE WORK

This study replicates the results of six graph CF methods, namely
NGCF, DGCEF, LightGCN, SGL, UltraGCN, and GFCF, and expands
the research to include state-of-the-art recommendation strategies
like UserkNN, ItemkNN, RP3[3, and EASER. The observed high rank-
ings of the latter ones highlight the need for more comprehensive
evaluations. After the initial study on the standard Gowalla, Yelp
2018, and Amazon Book datasets, experiments are extended to two
additional datasets, Allrecipes and BookCrossing, which reveal sub-
stantial ranking variations compared to the initial datasets. Thus,
the study introduces and analyzes the information flow in the graph

and discovers that 2-hop information (combining user activeness
and item popularity) is a valid indicator of CF behavior and could
motivate the recommendation performance. The experimental re-
sults call for further investigations into the diversity and fairness
of the considered methods and whether graph methods effectively
mitigate popularity bias.
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